This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Stirling's formula is proven using a number of local definitions. The main theorem stirling will use this final lemma, but it will not expose the local definitions. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | stirlinglem15.1 | |- F/ n ph |
|
| stirlinglem15.2 | |- S = ( n e. NN0 |-> ( ( sqrt ` ( ( 2 x. _pi ) x. n ) ) x. ( ( n / _e ) ^ n ) ) ) |
||
| stirlinglem15.3 | |- A = ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
||
| stirlinglem15.4 | |- D = ( n e. NN |-> ( A ` ( 2 x. n ) ) ) |
||
| stirlinglem15.5 | |- E = ( n e. NN |-> ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) |
||
| stirlinglem15.6 | |- V = ( n e. NN |-> ( ( ( ( 2 ^ ( 4 x. n ) ) x. ( ( ! ` n ) ^ 4 ) ) / ( ( ! ` ( 2 x. n ) ) ^ 2 ) ) / ( ( 2 x. n ) + 1 ) ) ) |
||
| stirlinglem15.7 | |- F = ( n e. NN |-> ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) ) |
||
| stirlinglem15.8 | |- H = ( n e. NN |-> ( ( n ^ 2 ) / ( n x. ( ( 2 x. n ) + 1 ) ) ) ) |
||
| stirlinglem15.9 | |- ( ph -> C e. RR+ ) |
||
| stirlinglem15.10 | |- ( ph -> A ~~> C ) |
||
| Assertion | stirlinglem15 | |- ( ph -> ( n e. NN |-> ( ( ! ` n ) / ( S ` n ) ) ) ~~> 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stirlinglem15.1 | |- F/ n ph |
|
| 2 | stirlinglem15.2 | |- S = ( n e. NN0 |-> ( ( sqrt ` ( ( 2 x. _pi ) x. n ) ) x. ( ( n / _e ) ^ n ) ) ) |
|
| 3 | stirlinglem15.3 | |- A = ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
|
| 4 | stirlinglem15.4 | |- D = ( n e. NN |-> ( A ` ( 2 x. n ) ) ) |
|
| 5 | stirlinglem15.5 | |- E = ( n e. NN |-> ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) |
|
| 6 | stirlinglem15.6 | |- V = ( n e. NN |-> ( ( ( ( 2 ^ ( 4 x. n ) ) x. ( ( ! ` n ) ^ 4 ) ) / ( ( ! ` ( 2 x. n ) ) ^ 2 ) ) / ( ( 2 x. n ) + 1 ) ) ) |
|
| 7 | stirlinglem15.7 | |- F = ( n e. NN |-> ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) ) |
|
| 8 | stirlinglem15.8 | |- H = ( n e. NN |-> ( ( n ^ 2 ) / ( n x. ( ( 2 x. n ) + 1 ) ) ) ) |
|
| 9 | stirlinglem15.9 | |- ( ph -> C e. RR+ ) |
|
| 10 | stirlinglem15.10 | |- ( ph -> A ~~> C ) |
|
| 11 | nnnn0 | |- ( n e. NN -> n e. NN0 ) |
|
| 12 | 11 | adantl | |- ( ( ph /\ n e. NN ) -> n e. NN0 ) |
| 13 | 2cnd | |- ( ( ph /\ n e. NN ) -> 2 e. CC ) |
|
| 14 | picn | |- _pi e. CC |
|
| 15 | 14 | a1i | |- ( ( ph /\ n e. NN ) -> _pi e. CC ) |
| 16 | 13 15 | mulcld | |- ( ( ph /\ n e. NN ) -> ( 2 x. _pi ) e. CC ) |
| 17 | nncn | |- ( n e. NN -> n e. CC ) |
|
| 18 | 17 | adantl | |- ( ( ph /\ n e. NN ) -> n e. CC ) |
| 19 | 16 18 | mulcld | |- ( ( ph /\ n e. NN ) -> ( ( 2 x. _pi ) x. n ) e. CC ) |
| 20 | 19 | sqrtcld | |- ( ( ph /\ n e. NN ) -> ( sqrt ` ( ( 2 x. _pi ) x. n ) ) e. CC ) |
| 21 | ere | |- _e e. RR |
|
| 22 | 21 | recni | |- _e e. CC |
| 23 | 22 | a1i | |- ( n e. NN -> _e e. CC ) |
| 24 | epos | |- 0 < _e |
|
| 25 | 21 24 | gt0ne0ii | |- _e =/= 0 |
| 26 | 25 | a1i | |- ( n e. NN -> _e =/= 0 ) |
| 27 | 17 23 26 | divcld | |- ( n e. NN -> ( n / _e ) e. CC ) |
| 28 | 27 11 | expcld | |- ( n e. NN -> ( ( n / _e ) ^ n ) e. CC ) |
| 29 | 28 | adantl | |- ( ( ph /\ n e. NN ) -> ( ( n / _e ) ^ n ) e. CC ) |
| 30 | 20 29 | mulcld | |- ( ( ph /\ n e. NN ) -> ( ( sqrt ` ( ( 2 x. _pi ) x. n ) ) x. ( ( n / _e ) ^ n ) ) e. CC ) |
| 31 | 2 | fvmpt2 | |- ( ( n e. NN0 /\ ( ( sqrt ` ( ( 2 x. _pi ) x. n ) ) x. ( ( n / _e ) ^ n ) ) e. CC ) -> ( S ` n ) = ( ( sqrt ` ( ( 2 x. _pi ) x. n ) ) x. ( ( n / _e ) ^ n ) ) ) |
| 32 | 12 30 31 | syl2anc | |- ( ( ph /\ n e. NN ) -> ( S ` n ) = ( ( sqrt ` ( ( 2 x. _pi ) x. n ) ) x. ( ( n / _e ) ^ n ) ) ) |
| 33 | 32 | oveq2d | |- ( ( ph /\ n e. NN ) -> ( ( ! ` n ) / ( S ` n ) ) = ( ( ! ` n ) / ( ( sqrt ` ( ( 2 x. _pi ) x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
| 34 | 15 | sqrtcld | |- ( ( ph /\ n e. NN ) -> ( sqrt ` _pi ) e. CC ) |
| 35 | 2cnd | |- ( n e. NN -> 2 e. CC ) |
|
| 36 | 35 17 | mulcld | |- ( n e. NN -> ( 2 x. n ) e. CC ) |
| 37 | 36 | sqrtcld | |- ( n e. NN -> ( sqrt ` ( 2 x. n ) ) e. CC ) |
| 38 | 37 | adantl | |- ( ( ph /\ n e. NN ) -> ( sqrt ` ( 2 x. n ) ) e. CC ) |
| 39 | 34 38 29 | mulassd | |- ( ( ph /\ n e. NN ) -> ( ( ( sqrt ` _pi ) x. ( sqrt ` ( 2 x. n ) ) ) x. ( ( n / _e ) ^ n ) ) = ( ( sqrt ` _pi ) x. ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
| 40 | nfmpt1 | |- F/_ n ( n e. NN |-> ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) ) |
|
| 41 | 7 40 | nfcxfr | |- F/_ n F |
| 42 | nfmpt1 | |- F/_ n ( n e. NN |-> ( ( n ^ 2 ) / ( n x. ( ( 2 x. n ) + 1 ) ) ) ) |
|
| 43 | 8 42 | nfcxfr | |- F/_ n H |
| 44 | nfmpt1 | |- F/_ n ( n e. NN |-> ( ( ( ( 2 ^ ( 4 x. n ) ) x. ( ( ! ` n ) ^ 4 ) ) / ( ( ! ` ( 2 x. n ) ) ^ 2 ) ) / ( ( 2 x. n ) + 1 ) ) ) |
|
| 45 | 6 44 | nfcxfr | |- F/_ n V |
| 46 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 47 | 1zzd | |- ( ph -> 1 e. ZZ ) |
|
| 48 | nfmpt1 | |- F/_ n ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
|
| 49 | 3 48 | nfcxfr | |- F/_ n A |
| 50 | nfmpt1 | |- F/_ n ( n e. NN |-> ( A ` ( 2 x. n ) ) ) |
|
| 51 | 4 50 | nfcxfr | |- F/_ n D |
| 52 | faccl | |- ( n e. NN0 -> ( ! ` n ) e. NN ) |
|
| 53 | 11 52 | syl | |- ( n e. NN -> ( ! ` n ) e. NN ) |
| 54 | 53 | nnrpd | |- ( n e. NN -> ( ! ` n ) e. RR+ ) |
| 55 | 2rp | |- 2 e. RR+ |
|
| 56 | 55 | a1i | |- ( n e. NN -> 2 e. RR+ ) |
| 57 | nnrp | |- ( n e. NN -> n e. RR+ ) |
|
| 58 | 56 57 | rpmulcld | |- ( n e. NN -> ( 2 x. n ) e. RR+ ) |
| 59 | 58 | rpsqrtcld | |- ( n e. NN -> ( sqrt ` ( 2 x. n ) ) e. RR+ ) |
| 60 | epr | |- _e e. RR+ |
|
| 61 | 60 | a1i | |- ( n e. NN -> _e e. RR+ ) |
| 62 | 57 61 | rpdivcld | |- ( n e. NN -> ( n / _e ) e. RR+ ) |
| 63 | nnz | |- ( n e. NN -> n e. ZZ ) |
|
| 64 | 62 63 | rpexpcld | |- ( n e. NN -> ( ( n / _e ) ^ n ) e. RR+ ) |
| 65 | 59 64 | rpmulcld | |- ( n e. NN -> ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) e. RR+ ) |
| 66 | 54 65 | rpdivcld | |- ( n e. NN -> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) e. RR+ ) |
| 67 | 3 66 | fmpti | |- A : NN --> RR+ |
| 68 | 67 | a1i | |- ( ph -> A : NN --> RR+ ) |
| 69 | eqid | |- ( n e. NN |-> ( ( A ` n ) ^ 4 ) ) = ( n e. NN |-> ( ( A ` n ) ^ 4 ) ) |
|
| 70 | eqid | |- ( n e. NN |-> ( ( D ` n ) ^ 2 ) ) = ( n e. NN |-> ( ( D ` n ) ^ 2 ) ) |
|
| 71 | 67 | a1i | |- ( n e. NN -> A : NN --> RR+ ) |
| 72 | 2nn | |- 2 e. NN |
|
| 73 | 72 | a1i | |- ( n e. NN -> 2 e. NN ) |
| 74 | id | |- ( n e. NN -> n e. NN ) |
|
| 75 | 73 74 | nnmulcld | |- ( n e. NN -> ( 2 x. n ) e. NN ) |
| 76 | 71 75 | ffvelcdmd | |- ( n e. NN -> ( A ` ( 2 x. n ) ) e. RR+ ) |
| 77 | 4 | fvmpt2 | |- ( ( n e. NN /\ ( A ` ( 2 x. n ) ) e. RR+ ) -> ( D ` n ) = ( A ` ( 2 x. n ) ) ) |
| 78 | 76 77 | mpdan | |- ( n e. NN -> ( D ` n ) = ( A ` ( 2 x. n ) ) ) |
| 79 | 78 76 | eqeltrd | |- ( n e. NN -> ( D ` n ) e. RR+ ) |
| 80 | 79 | adantl | |- ( ( ph /\ n e. NN ) -> ( D ` n ) e. RR+ ) |
| 81 | 1 49 51 4 68 7 69 70 80 9 10 | stirlinglem8 | |- ( ph -> F ~~> ( C ^ 2 ) ) |
| 82 | nnex | |- NN e. _V |
|
| 83 | 82 | mptex | |- ( n e. NN |-> ( ( ( ( 2 ^ ( 4 x. n ) ) x. ( ( ! ` n ) ^ 4 ) ) / ( ( ! ` ( 2 x. n ) ) ^ 2 ) ) / ( ( 2 x. n ) + 1 ) ) ) e. _V |
| 84 | 6 83 | eqeltri | |- V e. _V |
| 85 | 84 | a1i | |- ( ph -> V e. _V ) |
| 86 | eqid | |- ( n e. NN |-> ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) = ( n e. NN |-> ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) |
|
| 87 | eqid | |- ( n e. NN |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) = ( n e. NN |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) |
|
| 88 | eqid | |- ( n e. NN |-> ( 1 / n ) ) = ( n e. NN |-> ( 1 / n ) ) |
|
| 89 | 8 86 87 88 | stirlinglem1 | |- H ~~> ( 1 / 2 ) |
| 90 | 89 | a1i | |- ( ph -> H ~~> ( 1 / 2 ) ) |
| 91 | 53 | nncnd | |- ( n e. NN -> ( ! ` n ) e. CC ) |
| 92 | 37 28 | mulcld | |- ( n e. NN -> ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) e. CC ) |
| 93 | 58 | sqrtgt0d | |- ( n e. NN -> 0 < ( sqrt ` ( 2 x. n ) ) ) |
| 94 | 93 | gt0ne0d | |- ( n e. NN -> ( sqrt ` ( 2 x. n ) ) =/= 0 ) |
| 95 | nnne0 | |- ( n e. NN -> n =/= 0 ) |
|
| 96 | 17 23 95 26 | divne0d | |- ( n e. NN -> ( n / _e ) =/= 0 ) |
| 97 | 27 96 63 | expne0d | |- ( n e. NN -> ( ( n / _e ) ^ n ) =/= 0 ) |
| 98 | 37 28 94 97 | mulne0d | |- ( n e. NN -> ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) =/= 0 ) |
| 99 | 91 92 98 | divcld | |- ( n e. NN -> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) e. CC ) |
| 100 | 3 | fvmpt2 | |- ( ( n e. NN /\ ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) e. CC ) -> ( A ` n ) = ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
| 101 | 99 100 | mpdan | |- ( n e. NN -> ( A ` n ) = ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
| 102 | 101 99 | eqeltrd | |- ( n e. NN -> ( A ` n ) e. CC ) |
| 103 | 4nn0 | |- 4 e. NN0 |
|
| 104 | 103 | a1i | |- ( n e. NN -> 4 e. NN0 ) |
| 105 | 102 104 | expcld | |- ( n e. NN -> ( ( A ` n ) ^ 4 ) e. CC ) |
| 106 | 79 | rpcnd | |- ( n e. NN -> ( D ` n ) e. CC ) |
| 107 | 106 | sqcld | |- ( n e. NN -> ( ( D ` n ) ^ 2 ) e. CC ) |
| 108 | 79 | rpne0d | |- ( n e. NN -> ( D ` n ) =/= 0 ) |
| 109 | 2z | |- 2 e. ZZ |
|
| 110 | 109 | a1i | |- ( n e. NN -> 2 e. ZZ ) |
| 111 | 106 108 110 | expne0d | |- ( n e. NN -> ( ( D ` n ) ^ 2 ) =/= 0 ) |
| 112 | 105 107 111 | divcld | |- ( n e. NN -> ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) e. CC ) |
| 113 | 7 | fvmpt2 | |- ( ( n e. NN /\ ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) e. CC ) -> ( F ` n ) = ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) ) |
| 114 | 112 113 | mpdan | |- ( n e. NN -> ( F ` n ) = ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) ) |
| 115 | 114 112 | eqeltrd | |- ( n e. NN -> ( F ` n ) e. CC ) |
| 116 | 115 | adantl | |- ( ( ph /\ n e. NN ) -> ( F ` n ) e. CC ) |
| 117 | 17 | sqcld | |- ( n e. NN -> ( n ^ 2 ) e. CC ) |
| 118 | 1cnd | |- ( n e. NN -> 1 e. CC ) |
|
| 119 | 36 118 | addcld | |- ( n e. NN -> ( ( 2 x. n ) + 1 ) e. CC ) |
| 120 | 17 119 | mulcld | |- ( n e. NN -> ( n x. ( ( 2 x. n ) + 1 ) ) e. CC ) |
| 121 | 75 | nnred | |- ( n e. NN -> ( 2 x. n ) e. RR ) |
| 122 | 1red | |- ( n e. NN -> 1 e. RR ) |
|
| 123 | 75 | nngt0d | |- ( n e. NN -> 0 < ( 2 x. n ) ) |
| 124 | 0lt1 | |- 0 < 1 |
|
| 125 | 124 | a1i | |- ( n e. NN -> 0 < 1 ) |
| 126 | 121 122 123 125 | addgt0d | |- ( n e. NN -> 0 < ( ( 2 x. n ) + 1 ) ) |
| 127 | 126 | gt0ne0d | |- ( n e. NN -> ( ( 2 x. n ) + 1 ) =/= 0 ) |
| 128 | 17 119 95 127 | mulne0d | |- ( n e. NN -> ( n x. ( ( 2 x. n ) + 1 ) ) =/= 0 ) |
| 129 | 117 120 128 | divcld | |- ( n e. NN -> ( ( n ^ 2 ) / ( n x. ( ( 2 x. n ) + 1 ) ) ) e. CC ) |
| 130 | 8 | fvmpt2 | |- ( ( n e. NN /\ ( ( n ^ 2 ) / ( n x. ( ( 2 x. n ) + 1 ) ) ) e. CC ) -> ( H ` n ) = ( ( n ^ 2 ) / ( n x. ( ( 2 x. n ) + 1 ) ) ) ) |
| 131 | 129 130 | mpdan | |- ( n e. NN -> ( H ` n ) = ( ( n ^ 2 ) / ( n x. ( ( 2 x. n ) + 1 ) ) ) ) |
| 132 | 131 129 | eqeltrd | |- ( n e. NN -> ( H ` n ) e. CC ) |
| 133 | 132 | adantl | |- ( ( ph /\ n e. NN ) -> ( H ` n ) e. CC ) |
| 134 | 112 129 | mulcld | |- ( n e. NN -> ( ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) x. ( ( n ^ 2 ) / ( n x. ( ( 2 x. n ) + 1 ) ) ) ) e. CC ) |
| 135 | 3 4 5 6 | stirlinglem3 | |- V = ( n e. NN |-> ( ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) x. ( ( n ^ 2 ) / ( n x. ( ( 2 x. n ) + 1 ) ) ) ) ) |
| 136 | 135 | fvmpt2 | |- ( ( n e. NN /\ ( ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) x. ( ( n ^ 2 ) / ( n x. ( ( 2 x. n ) + 1 ) ) ) ) e. CC ) -> ( V ` n ) = ( ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) x. ( ( n ^ 2 ) / ( n x. ( ( 2 x. n ) + 1 ) ) ) ) ) |
| 137 | 134 136 | mpdan | |- ( n e. NN -> ( V ` n ) = ( ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) x. ( ( n ^ 2 ) / ( n x. ( ( 2 x. n ) + 1 ) ) ) ) ) |
| 138 | 114 131 | oveq12d | |- ( n e. NN -> ( ( F ` n ) x. ( H ` n ) ) = ( ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) x. ( ( n ^ 2 ) / ( n x. ( ( 2 x. n ) + 1 ) ) ) ) ) |
| 139 | 137 138 | eqtr4d | |- ( n e. NN -> ( V ` n ) = ( ( F ` n ) x. ( H ` n ) ) ) |
| 140 | 139 | adantl | |- ( ( ph /\ n e. NN ) -> ( V ` n ) = ( ( F ` n ) x. ( H ` n ) ) ) |
| 141 | 1 41 43 45 46 47 81 85 90 116 133 140 | climmulf | |- ( ph -> V ~~> ( ( C ^ 2 ) x. ( 1 / 2 ) ) ) |
| 142 | 6 | wallispi2 | |- V ~~> ( _pi / 2 ) |
| 143 | climuni | |- ( ( V ~~> ( ( C ^ 2 ) x. ( 1 / 2 ) ) /\ V ~~> ( _pi / 2 ) ) -> ( ( C ^ 2 ) x. ( 1 / 2 ) ) = ( _pi / 2 ) ) |
|
| 144 | 141 142 143 | sylancl | |- ( ph -> ( ( C ^ 2 ) x. ( 1 / 2 ) ) = ( _pi / 2 ) ) |
| 145 | 144 | oveq1d | |- ( ph -> ( ( ( C ^ 2 ) x. ( 1 / 2 ) ) / ( 1 / 2 ) ) = ( ( _pi / 2 ) / ( 1 / 2 ) ) ) |
| 146 | 9 | rpcnd | |- ( ph -> C e. CC ) |
| 147 | 146 | sqcld | |- ( ph -> ( C ^ 2 ) e. CC ) |
| 148 | 1cnd | |- ( ph -> 1 e. CC ) |
|
| 149 | 148 | halfcld | |- ( ph -> ( 1 / 2 ) e. CC ) |
| 150 | 2cnd | |- ( ph -> 2 e. CC ) |
|
| 151 | 2pos | |- 0 < 2 |
|
| 152 | 151 | a1i | |- ( ph -> 0 < 2 ) |
| 153 | 152 | gt0ne0d | |- ( ph -> 2 =/= 0 ) |
| 154 | 150 153 | recne0d | |- ( ph -> ( 1 / 2 ) =/= 0 ) |
| 155 | 147 149 154 | divcan4d | |- ( ph -> ( ( ( C ^ 2 ) x. ( 1 / 2 ) ) / ( 1 / 2 ) ) = ( C ^ 2 ) ) |
| 156 | 14 | a1i | |- ( ph -> _pi e. CC ) |
| 157 | 124 | a1i | |- ( ph -> 0 < 1 ) |
| 158 | 157 | gt0ne0d | |- ( ph -> 1 =/= 0 ) |
| 159 | 156 148 150 158 153 | divcan7d | |- ( ph -> ( ( _pi / 2 ) / ( 1 / 2 ) ) = ( _pi / 1 ) ) |
| 160 | 156 | div1d | |- ( ph -> ( _pi / 1 ) = _pi ) |
| 161 | 159 160 | eqtrd | |- ( ph -> ( ( _pi / 2 ) / ( 1 / 2 ) ) = _pi ) |
| 162 | 145 155 161 | 3eqtr3d | |- ( ph -> ( C ^ 2 ) = _pi ) |
| 163 | 162 | fveq2d | |- ( ph -> ( sqrt ` ( C ^ 2 ) ) = ( sqrt ` _pi ) ) |
| 164 | 9 | rprege0d | |- ( ph -> ( C e. RR /\ 0 <_ C ) ) |
| 165 | sqrtsq | |- ( ( C e. RR /\ 0 <_ C ) -> ( sqrt ` ( C ^ 2 ) ) = C ) |
|
| 166 | 164 165 | syl | |- ( ph -> ( sqrt ` ( C ^ 2 ) ) = C ) |
| 167 | 163 166 | eqtr3d | |- ( ph -> ( sqrt ` _pi ) = C ) |
| 168 | 167 | adantr | |- ( ( ph /\ n e. NN ) -> ( sqrt ` _pi ) = C ) |
| 169 | 168 | oveq1d | |- ( ( ph /\ n e. NN ) -> ( ( sqrt ` _pi ) x. ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) = ( C x. ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
| 170 | 146 | adantr | |- ( ( ph /\ n e. NN ) -> C e. CC ) |
| 171 | 92 | adantl | |- ( ( ph /\ n e. NN ) -> ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) e. CC ) |
| 172 | 170 171 | mulcomd | |- ( ( ph /\ n e. NN ) -> ( C x. ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) = ( ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) x. C ) ) |
| 173 | 39 169 172 | 3eqtrd | |- ( ( ph /\ n e. NN ) -> ( ( ( sqrt ` _pi ) x. ( sqrt ` ( 2 x. n ) ) ) x. ( ( n / _e ) ^ n ) ) = ( ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) x. C ) ) |
| 174 | 173 | oveq2d | |- ( ( ph /\ n e. NN ) -> ( ( ! ` n ) / ( ( ( sqrt ` _pi ) x. ( sqrt ` ( 2 x. n ) ) ) x. ( ( n / _e ) ^ n ) ) ) = ( ( ! ` n ) / ( ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) x. C ) ) ) |
| 175 | 2re | |- 2 e. RR |
|
| 176 | 175 | a1i | |- ( ( ph /\ n e. NN ) -> 2 e. RR ) |
| 177 | pire | |- _pi e. RR |
|
| 178 | 177 | a1i | |- ( ( ph /\ n e. NN ) -> _pi e. RR ) |
| 179 | 176 178 | remulcld | |- ( ( ph /\ n e. NN ) -> ( 2 x. _pi ) e. RR ) |
| 180 | 0le2 | |- 0 <_ 2 |
|
| 181 | 180 | a1i | |- ( ( ph /\ n e. NN ) -> 0 <_ 2 ) |
| 182 | 0re | |- 0 e. RR |
|
| 183 | pipos | |- 0 < _pi |
|
| 184 | 182 177 183 | ltleii | |- 0 <_ _pi |
| 185 | 184 | a1i | |- ( ( ph /\ n e. NN ) -> 0 <_ _pi ) |
| 186 | 176 178 181 185 | mulge0d | |- ( ( ph /\ n e. NN ) -> 0 <_ ( 2 x. _pi ) ) |
| 187 | 12 | nn0red | |- ( ( ph /\ n e. NN ) -> n e. RR ) |
| 188 | 12 | nn0ge0d | |- ( ( ph /\ n e. NN ) -> 0 <_ n ) |
| 189 | 179 186 187 188 | sqrtmuld | |- ( ( ph /\ n e. NN ) -> ( sqrt ` ( ( 2 x. _pi ) x. n ) ) = ( ( sqrt ` ( 2 x. _pi ) ) x. ( sqrt ` n ) ) ) |
| 190 | 176 181 178 185 | sqrtmuld | |- ( ( ph /\ n e. NN ) -> ( sqrt ` ( 2 x. _pi ) ) = ( ( sqrt ` 2 ) x. ( sqrt ` _pi ) ) ) |
| 191 | 190 | oveq1d | |- ( ( ph /\ n e. NN ) -> ( ( sqrt ` ( 2 x. _pi ) ) x. ( sqrt ` n ) ) = ( ( ( sqrt ` 2 ) x. ( sqrt ` _pi ) ) x. ( sqrt ` n ) ) ) |
| 192 | 13 | sqrtcld | |- ( ( ph /\ n e. NN ) -> ( sqrt ` 2 ) e. CC ) |
| 193 | 18 | sqrtcld | |- ( ( ph /\ n e. NN ) -> ( sqrt ` n ) e. CC ) |
| 194 | 192 34 193 | mulassd | |- ( ( ph /\ n e. NN ) -> ( ( ( sqrt ` 2 ) x. ( sqrt ` _pi ) ) x. ( sqrt ` n ) ) = ( ( sqrt ` 2 ) x. ( ( sqrt ` _pi ) x. ( sqrt ` n ) ) ) ) |
| 195 | 192 34 193 | mul12d | |- ( ( ph /\ n e. NN ) -> ( ( sqrt ` 2 ) x. ( ( sqrt ` _pi ) x. ( sqrt ` n ) ) ) = ( ( sqrt ` _pi ) x. ( ( sqrt ` 2 ) x. ( sqrt ` n ) ) ) ) |
| 196 | 176 181 187 188 | sqrtmuld | |- ( ( ph /\ n e. NN ) -> ( sqrt ` ( 2 x. n ) ) = ( ( sqrt ` 2 ) x. ( sqrt ` n ) ) ) |
| 197 | 196 | eqcomd | |- ( ( ph /\ n e. NN ) -> ( ( sqrt ` 2 ) x. ( sqrt ` n ) ) = ( sqrt ` ( 2 x. n ) ) ) |
| 198 | 197 | oveq2d | |- ( ( ph /\ n e. NN ) -> ( ( sqrt ` _pi ) x. ( ( sqrt ` 2 ) x. ( sqrt ` n ) ) ) = ( ( sqrt ` _pi ) x. ( sqrt ` ( 2 x. n ) ) ) ) |
| 199 | 195 198 | eqtrd | |- ( ( ph /\ n e. NN ) -> ( ( sqrt ` 2 ) x. ( ( sqrt ` _pi ) x. ( sqrt ` n ) ) ) = ( ( sqrt ` _pi ) x. ( sqrt ` ( 2 x. n ) ) ) ) |
| 200 | 191 194 199 | 3eqtrd | |- ( ( ph /\ n e. NN ) -> ( ( sqrt ` ( 2 x. _pi ) ) x. ( sqrt ` n ) ) = ( ( sqrt ` _pi ) x. ( sqrt ` ( 2 x. n ) ) ) ) |
| 201 | 189 200 | eqtrd | |- ( ( ph /\ n e. NN ) -> ( sqrt ` ( ( 2 x. _pi ) x. n ) ) = ( ( sqrt ` _pi ) x. ( sqrt ` ( 2 x. n ) ) ) ) |
| 202 | 201 | oveq1d | |- ( ( ph /\ n e. NN ) -> ( ( sqrt ` ( ( 2 x. _pi ) x. n ) ) x. ( ( n / _e ) ^ n ) ) = ( ( ( sqrt ` _pi ) x. ( sqrt ` ( 2 x. n ) ) ) x. ( ( n / _e ) ^ n ) ) ) |
| 203 | 202 | oveq2d | |- ( ( ph /\ n e. NN ) -> ( ( ! ` n ) / ( ( sqrt ` ( ( 2 x. _pi ) x. n ) ) x. ( ( n / _e ) ^ n ) ) ) = ( ( ! ` n ) / ( ( ( sqrt ` _pi ) x. ( sqrt ` ( 2 x. n ) ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
| 204 | 91 | adantl | |- ( ( ph /\ n e. NN ) -> ( ! ` n ) e. CC ) |
| 205 | 94 | adantl | |- ( ( ph /\ n e. NN ) -> ( sqrt ` ( 2 x. n ) ) =/= 0 ) |
| 206 | 22 | a1i | |- ( ( ph /\ n e. NN ) -> _e e. CC ) |
| 207 | 25 | a1i | |- ( ( ph /\ n e. NN ) -> _e =/= 0 ) |
| 208 | 18 206 207 | divcld | |- ( ( ph /\ n e. NN ) -> ( n / _e ) e. CC ) |
| 209 | 95 | adantl | |- ( ( ph /\ n e. NN ) -> n =/= 0 ) |
| 210 | 18 206 209 207 | divne0d | |- ( ( ph /\ n e. NN ) -> ( n / _e ) =/= 0 ) |
| 211 | 63 | adantl | |- ( ( ph /\ n e. NN ) -> n e. ZZ ) |
| 212 | 208 210 211 | expne0d | |- ( ( ph /\ n e. NN ) -> ( ( n / _e ) ^ n ) =/= 0 ) |
| 213 | 38 29 205 212 | mulne0d | |- ( ( ph /\ n e. NN ) -> ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) =/= 0 ) |
| 214 | 9 | rpne0d | |- ( ph -> C =/= 0 ) |
| 215 | 214 | adantr | |- ( ( ph /\ n e. NN ) -> C =/= 0 ) |
| 216 | 204 171 170 213 215 | divdiv1d | |- ( ( ph /\ n e. NN ) -> ( ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) / C ) = ( ( ! ` n ) / ( ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) x. C ) ) ) |
| 217 | 174 203 216 | 3eqtr4d | |- ( ( ph /\ n e. NN ) -> ( ( ! ` n ) / ( ( sqrt ` ( ( 2 x. _pi ) x. n ) ) x. ( ( n / _e ) ^ n ) ) ) = ( ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) / C ) ) |
| 218 | 99 | ancli | |- ( n e. NN -> ( n e. NN /\ ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) e. CC ) ) |
| 219 | 218 | adantl | |- ( ( ph /\ n e. NN ) -> ( n e. NN /\ ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) e. CC ) ) |
| 220 | 219 100 | syl | |- ( ( ph /\ n e. NN ) -> ( A ` n ) = ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
| 221 | 220 | eqcomd | |- ( ( ph /\ n e. NN ) -> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) = ( A ` n ) ) |
| 222 | 221 | oveq1d | |- ( ( ph /\ n e. NN ) -> ( ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) / C ) = ( ( A ` n ) / C ) ) |
| 223 | 33 217 222 | 3eqtrd | |- ( ( ph /\ n e. NN ) -> ( ( ! ` n ) / ( S ` n ) ) = ( ( A ` n ) / C ) ) |
| 224 | 1 223 | mpteq2da | |- ( ph -> ( n e. NN |-> ( ( ! ` n ) / ( S ` n ) ) ) = ( n e. NN |-> ( ( A ` n ) / C ) ) ) |
| 225 | 102 | adantl | |- ( ( ph /\ n e. NN ) -> ( A ` n ) e. CC ) |
| 226 | 225 170 215 | divrec2d | |- ( ( ph /\ n e. NN ) -> ( ( A ` n ) / C ) = ( ( 1 / C ) x. ( A ` n ) ) ) |
| 227 | 1 226 | mpteq2da | |- ( ph -> ( n e. NN |-> ( ( A ` n ) / C ) ) = ( n e. NN |-> ( ( 1 / C ) x. ( A ` n ) ) ) ) |
| 228 | 146 214 | reccld | |- ( ph -> ( 1 / C ) e. CC ) |
| 229 | 82 | mptex | |- ( n e. NN |-> ( ( 1 / C ) x. ( A ` n ) ) ) e. _V |
| 230 | 229 | a1i | |- ( ph -> ( n e. NN |-> ( ( 1 / C ) x. ( A ` n ) ) ) e. _V ) |
| 231 | 3 | a1i | |- ( k e. NN -> A = ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) ) |
| 232 | simpr | |- ( ( k e. NN /\ n = k ) -> n = k ) |
|
| 233 | 232 | fveq2d | |- ( ( k e. NN /\ n = k ) -> ( ! ` n ) = ( ! ` k ) ) |
| 234 | 232 | oveq2d | |- ( ( k e. NN /\ n = k ) -> ( 2 x. n ) = ( 2 x. k ) ) |
| 235 | 234 | fveq2d | |- ( ( k e. NN /\ n = k ) -> ( sqrt ` ( 2 x. n ) ) = ( sqrt ` ( 2 x. k ) ) ) |
| 236 | 232 | oveq1d | |- ( ( k e. NN /\ n = k ) -> ( n / _e ) = ( k / _e ) ) |
| 237 | 236 232 | oveq12d | |- ( ( k e. NN /\ n = k ) -> ( ( n / _e ) ^ n ) = ( ( k / _e ) ^ k ) ) |
| 238 | 235 237 | oveq12d | |- ( ( k e. NN /\ n = k ) -> ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) = ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) |
| 239 | 233 238 | oveq12d | |- ( ( k e. NN /\ n = k ) -> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) = ( ( ! ` k ) / ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) ) |
| 240 | id | |- ( k e. NN -> k e. NN ) |
|
| 241 | nnnn0 | |- ( k e. NN -> k e. NN0 ) |
|
| 242 | faccl | |- ( k e. NN0 -> ( ! ` k ) e. NN ) |
|
| 243 | nncn | |- ( ( ! ` k ) e. NN -> ( ! ` k ) e. CC ) |
|
| 244 | 241 242 243 | 3syl | |- ( k e. NN -> ( ! ` k ) e. CC ) |
| 245 | 2cnd | |- ( k e. NN -> 2 e. CC ) |
|
| 246 | nncn | |- ( k e. NN -> k e. CC ) |
|
| 247 | 245 246 | mulcld | |- ( k e. NN -> ( 2 x. k ) e. CC ) |
| 248 | 247 | sqrtcld | |- ( k e. NN -> ( sqrt ` ( 2 x. k ) ) e. CC ) |
| 249 | 22 | a1i | |- ( k e. NN -> _e e. CC ) |
| 250 | 25 | a1i | |- ( k e. NN -> _e =/= 0 ) |
| 251 | 246 249 250 | divcld | |- ( k e. NN -> ( k / _e ) e. CC ) |
| 252 | 251 241 | expcld | |- ( k e. NN -> ( ( k / _e ) ^ k ) e. CC ) |
| 253 | 248 252 | mulcld | |- ( k e. NN -> ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) e. CC ) |
| 254 | 55 | a1i | |- ( k e. NN -> 2 e. RR+ ) |
| 255 | nnrp | |- ( k e. NN -> k e. RR+ ) |
|
| 256 | 254 255 | rpmulcld | |- ( k e. NN -> ( 2 x. k ) e. RR+ ) |
| 257 | 256 | sqrtgt0d | |- ( k e. NN -> 0 < ( sqrt ` ( 2 x. k ) ) ) |
| 258 | 257 | gt0ne0d | |- ( k e. NN -> ( sqrt ` ( 2 x. k ) ) =/= 0 ) |
| 259 | nnne0 | |- ( k e. NN -> k =/= 0 ) |
|
| 260 | 246 249 259 250 | divne0d | |- ( k e. NN -> ( k / _e ) =/= 0 ) |
| 261 | nnz | |- ( k e. NN -> k e. ZZ ) |
|
| 262 | 251 260 261 | expne0d | |- ( k e. NN -> ( ( k / _e ) ^ k ) =/= 0 ) |
| 263 | 248 252 258 262 | mulne0d | |- ( k e. NN -> ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) =/= 0 ) |
| 264 | 244 253 263 | divcld | |- ( k e. NN -> ( ( ! ` k ) / ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) e. CC ) |
| 265 | 231 239 240 264 | fvmptd | |- ( k e. NN -> ( A ` k ) = ( ( ! ` k ) / ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) ) |
| 266 | 265 264 | eqeltrd | |- ( k e. NN -> ( A ` k ) e. CC ) |
| 267 | 266 | adantl | |- ( ( ph /\ k e. NN ) -> ( A ` k ) e. CC ) |
| 268 | nfcv | |- F/_ k ( ( 1 / C ) x. ( A ` n ) ) |
|
| 269 | nfcv | |- F/_ n 1 |
|
| 270 | nfcv | |- F/_ n / |
|
| 271 | nfcv | |- F/_ n C |
|
| 272 | 269 270 271 | nfov | |- F/_ n ( 1 / C ) |
| 273 | nfcv | |- F/_ n x. |
|
| 274 | nfcv | |- F/_ n k |
|
| 275 | 49 274 | nffv | |- F/_ n ( A ` k ) |
| 276 | 272 273 275 | nfov | |- F/_ n ( ( 1 / C ) x. ( A ` k ) ) |
| 277 | fveq2 | |- ( n = k -> ( A ` n ) = ( A ` k ) ) |
|
| 278 | 277 | oveq2d | |- ( n = k -> ( ( 1 / C ) x. ( A ` n ) ) = ( ( 1 / C ) x. ( A ` k ) ) ) |
| 279 | 268 276 278 | cbvmpt | |- ( n e. NN |-> ( ( 1 / C ) x. ( A ` n ) ) ) = ( k e. NN |-> ( ( 1 / C ) x. ( A ` k ) ) ) |
| 280 | 279 | a1i | |- ( ( ph /\ k e. NN ) -> ( n e. NN |-> ( ( 1 / C ) x. ( A ` n ) ) ) = ( k e. NN |-> ( ( 1 / C ) x. ( A ` k ) ) ) ) |
| 281 | 280 | fveq1d | |- ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( ( 1 / C ) x. ( A ` n ) ) ) ` k ) = ( ( k e. NN |-> ( ( 1 / C ) x. ( A ` k ) ) ) ` k ) ) |
| 282 | simpr | |- ( ( ph /\ k e. NN ) -> k e. NN ) |
|
| 283 | 146 | adantr | |- ( ( ph /\ k e. NN ) -> C e. CC ) |
| 284 | 214 | adantr | |- ( ( ph /\ k e. NN ) -> C =/= 0 ) |
| 285 | 283 284 | reccld | |- ( ( ph /\ k e. NN ) -> ( 1 / C ) e. CC ) |
| 286 | 285 267 | mulcld | |- ( ( ph /\ k e. NN ) -> ( ( 1 / C ) x. ( A ` k ) ) e. CC ) |
| 287 | eqid | |- ( k e. NN |-> ( ( 1 / C ) x. ( A ` k ) ) ) = ( k e. NN |-> ( ( 1 / C ) x. ( A ` k ) ) ) |
|
| 288 | 287 | fvmpt2 | |- ( ( k e. NN /\ ( ( 1 / C ) x. ( A ` k ) ) e. CC ) -> ( ( k e. NN |-> ( ( 1 / C ) x. ( A ` k ) ) ) ` k ) = ( ( 1 / C ) x. ( A ` k ) ) ) |
| 289 | 282 286 288 | syl2anc | |- ( ( ph /\ k e. NN ) -> ( ( k e. NN |-> ( ( 1 / C ) x. ( A ` k ) ) ) ` k ) = ( ( 1 / C ) x. ( A ` k ) ) ) |
| 290 | 281 289 | eqtrd | |- ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( ( 1 / C ) x. ( A ` n ) ) ) ` k ) = ( ( 1 / C ) x. ( A ` k ) ) ) |
| 291 | 46 47 10 228 230 267 290 | climmulc2 | |- ( ph -> ( n e. NN |-> ( ( 1 / C ) x. ( A ` n ) ) ) ~~> ( ( 1 / C ) x. C ) ) |
| 292 | 146 214 | recid2d | |- ( ph -> ( ( 1 / C ) x. C ) = 1 ) |
| 293 | 291 292 | breqtrd | |- ( ph -> ( n e. NN |-> ( ( 1 / C ) x. ( A ` n ) ) ) ~~> 1 ) |
| 294 | 227 293 | eqbrtrd | |- ( ph -> ( n e. NN |-> ( ( A ` n ) / C ) ) ~~> 1 ) |
| 295 | 224 294 | eqbrtrd | |- ( ph -> ( n e. NN |-> ( ( ! ` n ) / ( S ` n ) ) ) ~~> 1 ) |