This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternative version of Wallis' formula for π ; this second formula uses factorials and it is later used to prove Stirling's approximation formula. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wallispi2.1 | ⊢ 𝑉 = ( 𝑛 ∈ ℕ ↦ ( ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ! ‘ 𝑛 ) ↑ 4 ) ) / ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) | |
| Assertion | wallispi2 | ⊢ 𝑉 ⇝ ( π / 2 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wallispi2.1 | ⊢ 𝑉 = ( 𝑛 ∈ ℕ ↦ ( ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ! ‘ 𝑛 ) ↑ 4 ) ) / ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) | |
| 2 | eqid | ⊢ ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) · ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ) = ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) · ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ) | |
| 3 | 1cnd | ⊢ ( 𝑛 ∈ ℕ → 1 ∈ ℂ ) | |
| 4 | 2cnd | ⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℂ ) | |
| 5 | nncn | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) | |
| 6 | 4 5 | mulcld | ⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℂ ) |
| 7 | 6 3 | addcld | ⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) + 1 ) ∈ ℂ ) |
| 8 | elnnuz | ⊢ ( 𝑛 ∈ ℕ ↔ 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 9 | 8 | biimpi | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
| 10 | eqidd | ⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) ↑ 4 ) / ( ( ( 2 · 𝑘 ) · ( ( 2 · 𝑘 ) − 1 ) ) ↑ 2 ) ) ) = ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) ↑ 4 ) / ( ( ( 2 · 𝑘 ) · ( ( 2 · 𝑘 ) − 1 ) ) ↑ 2 ) ) ) ) | |
| 11 | simpr | ⊢ ( ( 𝑚 ∈ ( 1 ... 𝑛 ) ∧ 𝑘 = 𝑚 ) → 𝑘 = 𝑚 ) | |
| 12 | 11 | oveq2d | ⊢ ( ( 𝑚 ∈ ( 1 ... 𝑛 ) ∧ 𝑘 = 𝑚 ) → ( 2 · 𝑘 ) = ( 2 · 𝑚 ) ) |
| 13 | 12 | oveq1d | ⊢ ( ( 𝑚 ∈ ( 1 ... 𝑛 ) ∧ 𝑘 = 𝑚 ) → ( ( 2 · 𝑘 ) ↑ 4 ) = ( ( 2 · 𝑚 ) ↑ 4 ) ) |
| 14 | 12 | oveq1d | ⊢ ( ( 𝑚 ∈ ( 1 ... 𝑛 ) ∧ 𝑘 = 𝑚 ) → ( ( 2 · 𝑘 ) − 1 ) = ( ( 2 · 𝑚 ) − 1 ) ) |
| 15 | 12 14 | oveq12d | ⊢ ( ( 𝑚 ∈ ( 1 ... 𝑛 ) ∧ 𝑘 = 𝑚 ) → ( ( 2 · 𝑘 ) · ( ( 2 · 𝑘 ) − 1 ) ) = ( ( 2 · 𝑚 ) · ( ( 2 · 𝑚 ) − 1 ) ) ) |
| 16 | 15 | oveq1d | ⊢ ( ( 𝑚 ∈ ( 1 ... 𝑛 ) ∧ 𝑘 = 𝑚 ) → ( ( ( 2 · 𝑘 ) · ( ( 2 · 𝑘 ) − 1 ) ) ↑ 2 ) = ( ( ( 2 · 𝑚 ) · ( ( 2 · 𝑚 ) − 1 ) ) ↑ 2 ) ) |
| 17 | 13 16 | oveq12d | ⊢ ( ( 𝑚 ∈ ( 1 ... 𝑛 ) ∧ 𝑘 = 𝑚 ) → ( ( ( 2 · 𝑘 ) ↑ 4 ) / ( ( ( 2 · 𝑘 ) · ( ( 2 · 𝑘 ) − 1 ) ) ↑ 2 ) ) = ( ( ( 2 · 𝑚 ) ↑ 4 ) / ( ( ( 2 · 𝑚 ) · ( ( 2 · 𝑚 ) − 1 ) ) ↑ 2 ) ) ) |
| 18 | elfznn | ⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → 𝑚 ∈ ℕ ) | |
| 19 | 2cnd | ⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → 2 ∈ ℂ ) | |
| 20 | 18 | nncnd | ⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → 𝑚 ∈ ℂ ) |
| 21 | 19 20 | mulcld | ⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 2 · 𝑚 ) ∈ ℂ ) |
| 22 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
| 23 | 22 | a1i | ⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → 4 ∈ ℕ0 ) |
| 24 | 21 23 | expcld | ⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( ( 2 · 𝑚 ) ↑ 4 ) ∈ ℂ ) |
| 25 | 1cnd | ⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → 1 ∈ ℂ ) | |
| 26 | 21 25 | subcld | ⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( ( 2 · 𝑚 ) − 1 ) ∈ ℂ ) |
| 27 | 21 26 | mulcld | ⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( ( 2 · 𝑚 ) · ( ( 2 · 𝑚 ) − 1 ) ) ∈ ℂ ) |
| 28 | 27 | sqcld | ⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( ( ( 2 · 𝑚 ) · ( ( 2 · 𝑚 ) − 1 ) ) ↑ 2 ) ∈ ℂ ) |
| 29 | 2ne0 | ⊢ 2 ≠ 0 | |
| 30 | 29 | a1i | ⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → 2 ≠ 0 ) |
| 31 | 18 | nnne0d | ⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → 𝑚 ≠ 0 ) |
| 32 | 19 20 30 31 | mulne0d | ⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 2 · 𝑚 ) ≠ 0 ) |
| 33 | 1red | ⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → 1 ∈ ℝ ) | |
| 34 | 2re | ⊢ 2 ∈ ℝ | |
| 35 | 34 | a1i | ⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → 2 ∈ ℝ ) |
| 36 | 35 33 | remulcld | ⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 2 · 1 ) ∈ ℝ ) |
| 37 | 18 | nnred | ⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → 𝑚 ∈ ℝ ) |
| 38 | 35 37 | remulcld | ⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 2 · 𝑚 ) ∈ ℝ ) |
| 39 | 1lt2 | ⊢ 1 < 2 | |
| 40 | 39 | a1i | ⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → 1 < 2 ) |
| 41 | 2t1e2 | ⊢ ( 2 · 1 ) = 2 | |
| 42 | 40 41 | breqtrrdi | ⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → 1 < ( 2 · 1 ) ) |
| 43 | 0le2 | ⊢ 0 ≤ 2 | |
| 44 | 43 | a1i | ⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → 0 ≤ 2 ) |
| 45 | elfzle1 | ⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → 1 ≤ 𝑚 ) | |
| 46 | 33 37 35 44 45 | lemul2ad | ⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 2 · 1 ) ≤ ( 2 · 𝑚 ) ) |
| 47 | 33 36 38 42 46 | ltletrd | ⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → 1 < ( 2 · 𝑚 ) ) |
| 48 | 33 47 | gtned | ⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 2 · 𝑚 ) ≠ 1 ) |
| 49 | 21 25 48 | subne0d | ⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( ( 2 · 𝑚 ) − 1 ) ≠ 0 ) |
| 50 | 21 26 32 49 | mulne0d | ⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( ( 2 · 𝑚 ) · ( ( 2 · 𝑚 ) − 1 ) ) ≠ 0 ) |
| 51 | 2z | ⊢ 2 ∈ ℤ | |
| 52 | 51 | a1i | ⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → 2 ∈ ℤ ) |
| 53 | 27 50 52 | expne0d | ⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( ( ( 2 · 𝑚 ) · ( ( 2 · 𝑚 ) − 1 ) ) ↑ 2 ) ≠ 0 ) |
| 54 | 24 28 53 | divcld | ⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( ( ( 2 · 𝑚 ) ↑ 4 ) / ( ( ( 2 · 𝑚 ) · ( ( 2 · 𝑚 ) − 1 ) ) ↑ 2 ) ) ∈ ℂ ) |
| 55 | 10 17 18 54 | fvmptd | ⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) ↑ 4 ) / ( ( ( 2 · 𝑘 ) · ( ( 2 · 𝑘 ) − 1 ) ) ↑ 2 ) ) ) ‘ 𝑚 ) = ( ( ( 2 · 𝑚 ) ↑ 4 ) / ( ( ( 2 · 𝑚 ) · ( ( 2 · 𝑚 ) − 1 ) ) ↑ 2 ) ) ) |
| 56 | 55 54 | eqeltrd | ⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) ↑ 4 ) / ( ( ( 2 · 𝑘 ) · ( ( 2 · 𝑘 ) − 1 ) ) ↑ 2 ) ) ) ‘ 𝑚 ) ∈ ℂ ) |
| 57 | 56 | adantl | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) ↑ 4 ) / ( ( ( 2 · 𝑘 ) · ( ( 2 · 𝑘 ) − 1 ) ) ↑ 2 ) ) ) ‘ 𝑚 ) ∈ ℂ ) |
| 58 | mulcl | ⊢ ( ( 𝑚 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( 𝑚 · 𝑤 ) ∈ ℂ ) | |
| 59 | 58 | adantl | ⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝑚 ∈ ℂ ∧ 𝑤 ∈ ℂ ) ) → ( 𝑚 · 𝑤 ) ∈ ℂ ) |
| 60 | 9 57 59 | seqcl | ⊢ ( 𝑛 ∈ ℕ → ( seq 1 ( · , ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) ↑ 4 ) / ( ( ( 2 · 𝑘 ) · ( ( 2 · 𝑘 ) − 1 ) ) ↑ 2 ) ) ) ) ‘ 𝑛 ) ∈ ℂ ) |
| 61 | 2nn | ⊢ 2 ∈ ℕ | |
| 62 | 61 | a1i | ⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℕ ) |
| 63 | id | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ ) | |
| 64 | 62 63 | nnmulcld | ⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℕ ) |
| 65 | 64 | peano2nnd | ⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ ) |
| 66 | 65 | nnne0d | ⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) + 1 ) ≠ 0 ) |
| 67 | 3 7 60 66 | div32d | ⊢ ( 𝑛 ∈ ℕ → ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( seq 1 ( · , ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) ↑ 4 ) / ( ( ( 2 · 𝑘 ) · ( ( 2 · 𝑘 ) − 1 ) ) ↑ 2 ) ) ) ) ‘ 𝑛 ) ) = ( 1 · ( ( seq 1 ( · , ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) ↑ 4 ) / ( ( ( 2 · 𝑘 ) · ( ( 2 · 𝑘 ) − 1 ) ) ↑ 2 ) ) ) ) ‘ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
| 68 | 60 7 66 | divcld | ⊢ ( 𝑛 ∈ ℕ → ( ( seq 1 ( · , ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) ↑ 4 ) / ( ( ( 2 · 𝑘 ) · ( ( 2 · 𝑘 ) − 1 ) ) ↑ 2 ) ) ) ) ‘ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℂ ) |
| 69 | 68 | mullidd | ⊢ ( 𝑛 ∈ ℕ → ( 1 · ( ( seq 1 ( · , ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) ↑ 4 ) / ( ( ( 2 · 𝑘 ) · ( ( 2 · 𝑘 ) − 1 ) ) ↑ 2 ) ) ) ) ‘ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) ) = ( ( seq 1 ( · , ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) ↑ 4 ) / ( ( ( 2 · 𝑘 ) · ( ( 2 · 𝑘 ) − 1 ) ) ↑ 2 ) ) ) ) ‘ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 70 | wallispi2lem2 | ⊢ ( 𝑛 ∈ ℕ → ( seq 1 ( · , ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) ↑ 4 ) / ( ( ( 2 · 𝑘 ) · ( ( 2 · 𝑘 ) − 1 ) ) ↑ 2 ) ) ) ) ‘ 𝑛 ) = ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ! ‘ 𝑛 ) ↑ 4 ) ) / ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) | |
| 71 | 70 | oveq1d | ⊢ ( 𝑛 ∈ ℕ → ( ( seq 1 ( · , ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) ↑ 4 ) / ( ( ( 2 · 𝑘 ) · ( ( 2 · 𝑘 ) − 1 ) ) ↑ 2 ) ) ) ) ‘ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ! ‘ 𝑛 ) ↑ 4 ) ) / ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 72 | 67 69 71 | 3eqtrd | ⊢ ( 𝑛 ∈ ℕ → ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( seq 1 ( · , ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) ↑ 4 ) / ( ( ( 2 · 𝑘 ) · ( ( 2 · 𝑘 ) − 1 ) ) ↑ 2 ) ) ) ) ‘ 𝑛 ) ) = ( ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ! ‘ 𝑛 ) ↑ 4 ) ) / ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 73 | 72 | mpteq2ia | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( seq 1 ( · , ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) ↑ 4 ) / ( ( ( 2 · 𝑘 ) · ( ( 2 · 𝑘 ) − 1 ) ) ↑ 2 ) ) ) ) ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ! ‘ 𝑛 ) ↑ 4 ) ) / ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 74 | wallispi2lem1 | ⊢ ( 𝑛 ∈ ℕ → ( seq 1 ( · , ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) · ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ) ) ‘ 𝑛 ) = ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( seq 1 ( · , ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) ↑ 4 ) / ( ( ( 2 · 𝑘 ) · ( ( 2 · 𝑘 ) − 1 ) ) ↑ 2 ) ) ) ) ‘ 𝑛 ) ) ) | |
| 75 | 74 | mpteq2ia | ⊢ ( 𝑛 ∈ ℕ ↦ ( seq 1 ( · , ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) · ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ) ) ‘ 𝑛 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( seq 1 ( · , ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) ↑ 4 ) / ( ( ( 2 · 𝑘 ) · ( ( 2 · 𝑘 ) − 1 ) ) ↑ 2 ) ) ) ) ‘ 𝑛 ) ) ) |
| 76 | 73 75 1 | 3eqtr4ri | ⊢ 𝑉 = ( 𝑛 ∈ ℕ ↦ ( seq 1 ( · , ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) · ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ) ) ‘ 𝑛 ) ) |
| 77 | 2 76 | wallispi | ⊢ 𝑉 ⇝ ( π / 2 ) |