This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A converges to C , then F converges to C^2 . (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | stirlinglem8.1 | ⊢ Ⅎ 𝑛 𝜑 | |
| stirlinglem8.2 | ⊢ Ⅎ 𝑛 𝐴 | ||
| stirlinglem8.3 | ⊢ Ⅎ 𝑛 𝐷 | ||
| stirlinglem8.4 | ⊢ 𝐷 = ( 𝑛 ∈ ℕ ↦ ( 𝐴 ‘ ( 2 · 𝑛 ) ) ) | ||
| stirlinglem8.5 | ⊢ ( 𝜑 → 𝐴 : ℕ ⟶ ℝ+ ) | ||
| stirlinglem8.6 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ) | ||
| stirlinglem8.7 | ⊢ 𝐿 = ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ) | ||
| stirlinglem8.8 | ⊢ 𝑀 = ( 𝑛 ∈ ℕ ↦ ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) | ||
| stirlinglem8.9 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐷 ‘ 𝑛 ) ∈ ℝ+ ) | ||
| stirlinglem8.10 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | ||
| stirlinglem8.11 | ⊢ ( 𝜑 → 𝐴 ⇝ 𝐶 ) | ||
| Assertion | stirlinglem8 | ⊢ ( 𝜑 → 𝐹 ⇝ ( 𝐶 ↑ 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stirlinglem8.1 | ⊢ Ⅎ 𝑛 𝜑 | |
| 2 | stirlinglem8.2 | ⊢ Ⅎ 𝑛 𝐴 | |
| 3 | stirlinglem8.3 | ⊢ Ⅎ 𝑛 𝐷 | |
| 4 | stirlinglem8.4 | ⊢ 𝐷 = ( 𝑛 ∈ ℕ ↦ ( 𝐴 ‘ ( 2 · 𝑛 ) ) ) | |
| 5 | stirlinglem8.5 | ⊢ ( 𝜑 → 𝐴 : ℕ ⟶ ℝ+ ) | |
| 6 | stirlinglem8.6 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ) | |
| 7 | stirlinglem8.7 | ⊢ 𝐿 = ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ) | |
| 8 | stirlinglem8.8 | ⊢ 𝑀 = ( 𝑛 ∈ ℕ ↦ ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) | |
| 9 | stirlinglem8.9 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐷 ‘ 𝑛 ) ∈ ℝ+ ) | |
| 10 | stirlinglem8.10 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | |
| 11 | stirlinglem8.11 | ⊢ ( 𝜑 → 𝐴 ⇝ 𝐶 ) | |
| 12 | nfmpt1 | ⊢ Ⅎ 𝑛 ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ) | |
| 13 | 7 12 | nfcxfr | ⊢ Ⅎ 𝑛 𝐿 |
| 14 | nfmpt1 | ⊢ Ⅎ 𝑛 ( 𝑛 ∈ ℕ ↦ ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) | |
| 15 | 8 14 | nfcxfr | ⊢ Ⅎ 𝑛 𝑀 |
| 16 | nfmpt1 | ⊢ Ⅎ 𝑛 ( 𝑛 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ) | |
| 17 | 6 16 | nfcxfr | ⊢ Ⅎ 𝑛 𝐹 |
| 18 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 19 | 1zzd | ⊢ ( 𝜑 → 1 ∈ ℤ ) | |
| 20 | rrpsscn | ⊢ ℝ+ ⊆ ℂ | |
| 21 | fss | ⊢ ( ( 𝐴 : ℕ ⟶ ℝ+ ∧ ℝ+ ⊆ ℂ ) → 𝐴 : ℕ ⟶ ℂ ) | |
| 22 | 5 20 21 | sylancl | ⊢ ( 𝜑 → 𝐴 : ℕ ⟶ ℂ ) |
| 23 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
| 24 | 23 | a1i | ⊢ ( 𝜑 → 4 ∈ ℕ0 ) |
| 25 | nnex | ⊢ ℕ ∈ V | |
| 26 | 25 | mptex | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ) ∈ V |
| 27 | 7 26 | eqeltri | ⊢ 𝐿 ∈ V |
| 28 | 27 | a1i | ⊢ ( 𝜑 → 𝐿 ∈ V ) |
| 29 | simpr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) | |
| 30 | 5 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ‘ 𝑛 ) ∈ ℝ+ ) |
| 31 | 30 | rpcnd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ‘ 𝑛 ) ∈ ℂ ) |
| 32 | 23 | a1i | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 4 ∈ ℕ0 ) |
| 33 | 31 32 | expcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ∈ ℂ ) |
| 34 | 7 | fvmpt2 | ⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ∈ ℂ ) → ( 𝐿 ‘ 𝑛 ) = ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ) |
| 35 | 29 33 34 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐿 ‘ 𝑛 ) = ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ) |
| 36 | 1 2 13 18 19 22 11 24 28 35 | climexp | ⊢ ( 𝜑 → 𝐿 ⇝ ( 𝐶 ↑ 4 ) ) |
| 37 | 25 | mptex | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ) ∈ V |
| 38 | 6 37 | eqeltri | ⊢ 𝐹 ∈ V |
| 39 | 38 | a1i | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 40 | 22 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 : ℕ ⟶ ℂ ) |
| 41 | 2nn | ⊢ 2 ∈ ℕ | |
| 42 | 41 | a1i | ⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℕ ) |
| 43 | id | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ ) | |
| 44 | 42 43 | nnmulcld | ⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℕ ) |
| 45 | 44 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2 · 𝑛 ) ∈ ℕ ) |
| 46 | 40 45 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ‘ ( 2 · 𝑛 ) ) ∈ ℂ ) |
| 47 | 1 46 4 | fmptdf | ⊢ ( 𝜑 → 𝐷 : ℕ ⟶ ℂ ) |
| 48 | nfmpt1 | ⊢ Ⅎ 𝑛 ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) | |
| 49 | fex | ⊢ ( ( 𝐴 : ℕ ⟶ ℂ ∧ ℕ ∈ V ) → 𝐴 ∈ V ) | |
| 50 | 22 25 49 | sylancl | ⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 51 | 1nn | ⊢ 1 ∈ ℕ | |
| 52 | 2cnd | ⊢ ( 𝜑 → 2 ∈ ℂ ) | |
| 53 | 1cnd | ⊢ ( 𝜑 → 1 ∈ ℂ ) | |
| 54 | 52 53 | mulcld | ⊢ ( 𝜑 → ( 2 · 1 ) ∈ ℂ ) |
| 55 | oveq2 | ⊢ ( 𝑛 = 1 → ( 2 · 𝑛 ) = ( 2 · 1 ) ) | |
| 56 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) = ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) | |
| 57 | 55 56 | fvmptg | ⊢ ( ( 1 ∈ ℕ ∧ ( 2 · 1 ) ∈ ℂ ) → ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 1 ) = ( 2 · 1 ) ) |
| 58 | 51 54 57 | sylancr | ⊢ ( 𝜑 → ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 1 ) = ( 2 · 1 ) ) |
| 59 | 41 | a1i | ⊢ ( 𝜑 → 2 ∈ ℕ ) |
| 60 | 51 | a1i | ⊢ ( 𝜑 → 1 ∈ ℕ ) |
| 61 | 59 60 | nnmulcld | ⊢ ( 𝜑 → ( 2 · 1 ) ∈ ℕ ) |
| 62 | 58 61 | eqeltrd | ⊢ ( 𝜑 → ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 1 ) ∈ ℕ ) |
| 63 | 1red | ⊢ ( 𝑛 ∈ ℕ → 1 ∈ ℝ ) | |
| 64 | 42 | nnred | ⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℝ ) |
| 65 | 44 | nnred | ⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℝ ) |
| 66 | 42 | nnge1d | ⊢ ( 𝑛 ∈ ℕ → 1 ≤ 2 ) |
| 67 | 63 64 65 66 | leadd2dd | ⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) + 1 ) ≤ ( ( 2 · 𝑛 ) + 2 ) ) |
| 68 | 56 | fvmpt2 | ⊢ ( ( 𝑛 ∈ ℕ ∧ ( 2 · 𝑛 ) ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) = ( 2 · 𝑛 ) ) |
| 69 | 44 68 | mpdan | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) = ( 2 · 𝑛 ) ) |
| 70 | 69 | oveq1d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) + 1 ) = ( ( 2 · 𝑛 ) + 1 ) ) |
| 71 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( 2 · 𝑛 ) = ( 2 · 𝑘 ) ) | |
| 72 | 71 | cbvmptv | ⊢ ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) = ( 𝑘 ∈ ℕ ↦ ( 2 · 𝑘 ) ) |
| 73 | 72 | a1i | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) = ( 𝑘 ∈ ℕ ↦ ( 2 · 𝑘 ) ) ) |
| 74 | simpr | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 = ( 𝑛 + 1 ) ) → 𝑘 = ( 𝑛 + 1 ) ) | |
| 75 | 74 | oveq2d | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 = ( 𝑛 + 1 ) ) → ( 2 · 𝑘 ) = ( 2 · ( 𝑛 + 1 ) ) ) |
| 76 | peano2nn | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℕ ) | |
| 77 | 42 76 | nnmulcld | ⊢ ( 𝑛 ∈ ℕ → ( 2 · ( 𝑛 + 1 ) ) ∈ ℕ ) |
| 78 | 73 75 76 77 | fvmptd | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ ( 𝑛 + 1 ) ) = ( 2 · ( 𝑛 + 1 ) ) ) |
| 79 | 2cnd | ⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℂ ) | |
| 80 | nncn | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) | |
| 81 | 1cnd | ⊢ ( 𝑛 ∈ ℕ → 1 ∈ ℂ ) | |
| 82 | 79 80 81 | adddid | ⊢ ( 𝑛 ∈ ℕ → ( 2 · ( 𝑛 + 1 ) ) = ( ( 2 · 𝑛 ) + ( 2 · 1 ) ) ) |
| 83 | 79 | mulridd | ⊢ ( 𝑛 ∈ ℕ → ( 2 · 1 ) = 2 ) |
| 84 | 83 | oveq2d | ⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) + ( 2 · 1 ) ) = ( ( 2 · 𝑛 ) + 2 ) ) |
| 85 | 78 82 84 | 3eqtrd | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ ( 𝑛 + 1 ) ) = ( ( 2 · 𝑛 ) + 2 ) ) |
| 86 | 67 70 85 | 3brtr4d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) + 1 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ ( 𝑛 + 1 ) ) ) |
| 87 | 44 | nnzd | ⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℤ ) |
| 88 | 69 87 | eqeltrd | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) ∈ ℤ ) |
| 89 | 88 | peano2zd | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) + 1 ) ∈ ℤ ) |
| 90 | 77 | nnzd | ⊢ ( 𝑛 ∈ ℕ → ( 2 · ( 𝑛 + 1 ) ) ∈ ℤ ) |
| 91 | 78 90 | eqeltrd | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ ( 𝑛 + 1 ) ) ∈ ℤ ) |
| 92 | eluz | ⊢ ( ( ( ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) + 1 ) ∈ ℤ ∧ ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ ( 𝑛 + 1 ) ) ∈ ℤ ) → ( ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ ( 𝑛 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) + 1 ) ) ↔ ( ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) + 1 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ ( 𝑛 + 1 ) ) ) ) | |
| 93 | 89 91 92 | syl2anc | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ ( 𝑛 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) + 1 ) ) ↔ ( ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) + 1 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ ( 𝑛 + 1 ) ) ) ) |
| 94 | 86 93 | mpbird | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ ( 𝑛 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) + 1 ) ) ) |
| 95 | 94 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ ( 𝑛 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) + 1 ) ) ) |
| 96 | 25 | mptex | ⊢ ( 𝑛 ∈ ℕ ↦ ( 𝐴 ‘ ( 2 · 𝑛 ) ) ) ∈ V |
| 97 | 4 96 | eqeltri | ⊢ 𝐷 ∈ V |
| 98 | 97 | a1i | ⊢ ( 𝜑 → 𝐷 ∈ V ) |
| 99 | 4 | fvmpt2 | ⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐴 ‘ ( 2 · 𝑛 ) ) ∈ ℂ ) → ( 𝐷 ‘ 𝑛 ) = ( 𝐴 ‘ ( 2 · 𝑛 ) ) ) |
| 100 | 29 46 99 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐷 ‘ 𝑛 ) = ( 𝐴 ‘ ( 2 · 𝑛 ) ) ) |
| 101 | 69 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) = ( 2 · 𝑛 ) ) |
| 102 | 101 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2 · 𝑛 ) = ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) ) |
| 103 | 102 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ‘ ( 2 · 𝑛 ) ) = ( 𝐴 ‘ ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) ) ) |
| 104 | 100 103 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐷 ‘ 𝑛 ) = ( 𝐴 ‘ ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) ) ) |
| 105 | 1 2 3 48 18 19 50 31 11 62 95 98 104 | climsuse | ⊢ ( 𝜑 → 𝐷 ⇝ 𝐶 ) |
| 106 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 107 | 106 | a1i | ⊢ ( 𝜑 → 2 ∈ ℕ0 ) |
| 108 | 25 | mptex | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ∈ V |
| 109 | 8 108 | eqeltri | ⊢ 𝑀 ∈ V |
| 110 | 109 | a1i | ⊢ ( 𝜑 → 𝑀 ∈ V ) |
| 111 | 9 | rpcnd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐷 ‘ 𝑛 ) ∈ ℂ ) |
| 112 | 111 | sqcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ∈ ℂ ) |
| 113 | 8 | fvmpt2 | ⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ∈ ℂ ) → ( 𝑀 ‘ 𝑛 ) = ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) |
| 114 | 29 112 113 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ 𝑛 ) = ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) |
| 115 | 1 3 15 18 19 47 105 107 110 114 | climexp | ⊢ ( 𝜑 → 𝑀 ⇝ ( 𝐶 ↑ 2 ) ) |
| 116 | 10 | rpcnd | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 117 | 10 | rpne0d | ⊢ ( 𝜑 → 𝐶 ≠ 0 ) |
| 118 | 2z | ⊢ 2 ∈ ℤ | |
| 119 | 118 | a1i | ⊢ ( 𝜑 → 2 ∈ ℤ ) |
| 120 | 116 117 119 | expne0d | ⊢ ( 𝜑 → ( 𝐶 ↑ 2 ) ≠ 0 ) |
| 121 | 1 33 7 | fmptdf | ⊢ ( 𝜑 → 𝐿 : ℕ ⟶ ℂ ) |
| 122 | 121 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐿 ‘ 𝑛 ) ∈ ℂ ) |
| 123 | 114 112 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ 𝑛 ) ∈ ℂ ) |
| 124 | 100 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) = ( ( 𝐴 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) |
| 125 | 114 124 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ 𝑛 ) = ( ( 𝐴 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) |
| 126 | 100 9 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ‘ ( 2 · 𝑛 ) ) ∈ ℝ+ ) |
| 127 | 118 | a1i | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 2 ∈ ℤ ) |
| 128 | 126 127 | rpexpcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ∈ ℝ+ ) |
| 129 | 125 128 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ 𝑛 ) ∈ ℝ+ ) |
| 130 | 129 | rpne0d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ 𝑛 ) ≠ 0 ) |
| 131 | 130 | neneqd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ¬ ( 𝑀 ‘ 𝑛 ) = 0 ) |
| 132 | 0cn | ⊢ 0 ∈ ℂ | |
| 133 | elsn2g | ⊢ ( 0 ∈ ℂ → ( ( 𝑀 ‘ 𝑛 ) ∈ { 0 } ↔ ( 𝑀 ‘ 𝑛 ) = 0 ) ) | |
| 134 | 132 133 | ax-mp | ⊢ ( ( 𝑀 ‘ 𝑛 ) ∈ { 0 } ↔ ( 𝑀 ‘ 𝑛 ) = 0 ) |
| 135 | 131 134 | sylnibr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ¬ ( 𝑀 ‘ 𝑛 ) ∈ { 0 } ) |
| 136 | 123 135 | eldifd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ 𝑛 ) ∈ ( ℂ ∖ { 0 } ) ) |
| 137 | 32 | nn0zd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 4 ∈ ℤ ) |
| 138 | 30 137 | rpexpcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ∈ ℝ+ ) |
| 139 | 9 127 | rpexpcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ∈ ℝ+ ) |
| 140 | 138 139 | rpdivcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ∈ ℝ+ ) |
| 141 | 6 | fvmpt2 | ⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ∈ ℝ+ ) → ( 𝐹 ‘ 𝑛 ) = ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ) |
| 142 | 29 140 141 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) = ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ) |
| 143 | 7 | fvmpt2 | ⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ∈ ℝ+ ) → ( 𝐿 ‘ 𝑛 ) = ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ) |
| 144 | 29 138 143 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐿 ‘ 𝑛 ) = ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ) |
| 145 | 144 114 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐿 ‘ 𝑛 ) / ( 𝑀 ‘ 𝑛 ) ) = ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ) |
| 146 | 142 145 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) = ( ( 𝐿 ‘ 𝑛 ) / ( 𝑀 ‘ 𝑛 ) ) ) |
| 147 | 1 13 15 17 18 19 36 39 115 120 122 136 146 | climdivf | ⊢ ( 𝜑 → 𝐹 ⇝ ( ( 𝐶 ↑ 4 ) / ( 𝐶 ↑ 2 ) ) ) |
| 148 | 2cn | ⊢ 2 ∈ ℂ | |
| 149 | 2p2e4 | ⊢ ( 2 + 2 ) = 4 | |
| 150 | 148 148 149 | mvlladdi | ⊢ 2 = ( 4 − 2 ) |
| 151 | 150 | a1i | ⊢ ( 𝜑 → 2 = ( 4 − 2 ) ) |
| 152 | 151 | oveq2d | ⊢ ( 𝜑 → ( 𝐶 ↑ 2 ) = ( 𝐶 ↑ ( 4 − 2 ) ) ) |
| 153 | 24 | nn0zd | ⊢ ( 𝜑 → 4 ∈ ℤ ) |
| 154 | 116 117 119 153 | expsubd | ⊢ ( 𝜑 → ( 𝐶 ↑ ( 4 − 2 ) ) = ( ( 𝐶 ↑ 4 ) / ( 𝐶 ↑ 2 ) ) ) |
| 155 | 152 154 | eqtrd | ⊢ ( 𝜑 → ( 𝐶 ↑ 2 ) = ( ( 𝐶 ↑ 4 ) / ( 𝐶 ↑ 2 ) ) ) |
| 156 | 147 155 | breqtrrd | ⊢ ( 𝜑 → 𝐹 ⇝ ( 𝐶 ↑ 2 ) ) |