This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Long but simple algebraic transformations are applied to show that V , the Wallis formula for π , can be expressed in terms of A , the Stirling's approximation formula for the factorial, up to a constant factor. This will allow (in a later theorem) to determine the right constant factor to be put into the A , in order to get the exact Stirling's formula. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | stirlinglem3.1 | ⊢ 𝐴 = ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) | |
| stirlinglem3.2 | ⊢ 𝐷 = ( 𝑛 ∈ ℕ ↦ ( 𝐴 ‘ ( 2 · 𝑛 ) ) ) | ||
| stirlinglem3.3 | ⊢ 𝐸 = ( 𝑛 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) | ||
| stirlinglem3.4 | ⊢ 𝑉 = ( 𝑛 ∈ ℕ ↦ ( ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ! ‘ 𝑛 ) ↑ 4 ) ) / ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) | ||
| Assertion | stirlinglem3 | ⊢ 𝑉 = ( 𝑛 ∈ ℕ ↦ ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stirlinglem3.1 | ⊢ 𝐴 = ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) | |
| 2 | stirlinglem3.2 | ⊢ 𝐷 = ( 𝑛 ∈ ℕ ↦ ( 𝐴 ‘ ( 2 · 𝑛 ) ) ) | |
| 3 | stirlinglem3.3 | ⊢ 𝐸 = ( 𝑛 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) | |
| 4 | stirlinglem3.4 | ⊢ 𝑉 = ( 𝑛 ∈ ℕ ↦ ( ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ! ‘ 𝑛 ) ↑ 4 ) ) / ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) | |
| 5 | nnnn0 | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) | |
| 6 | faccl | ⊢ ( 𝑛 ∈ ℕ0 → ( ! ‘ 𝑛 ) ∈ ℕ ) | |
| 7 | nncn | ⊢ ( ( ! ‘ 𝑛 ) ∈ ℕ → ( ! ‘ 𝑛 ) ∈ ℂ ) | |
| 8 | 5 6 7 | 3syl | ⊢ ( 𝑛 ∈ ℕ → ( ! ‘ 𝑛 ) ∈ ℂ ) |
| 9 | 2cnd | ⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℂ ) | |
| 10 | nncn | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) | |
| 11 | 9 10 | mulcld | ⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℂ ) |
| 12 | 11 | sqrtcld | ⊢ ( 𝑛 ∈ ℕ → ( √ ‘ ( 2 · 𝑛 ) ) ∈ ℂ ) |
| 13 | ere | ⊢ e ∈ ℝ | |
| 14 | 13 | recni | ⊢ e ∈ ℂ |
| 15 | 14 | a1i | ⊢ ( 𝑛 ∈ ℕ → e ∈ ℂ ) |
| 16 | epos | ⊢ 0 < e | |
| 17 | 13 16 | gt0ne0ii | ⊢ e ≠ 0 |
| 18 | 17 | a1i | ⊢ ( 𝑛 ∈ ℕ → e ≠ 0 ) |
| 19 | 10 15 18 | divcld | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 / e ) ∈ ℂ ) |
| 20 | 19 5 | expcld | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 / e ) ↑ 𝑛 ) ∈ ℂ ) |
| 21 | 12 20 | mulcld | ⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ∈ ℂ ) |
| 22 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 23 | 22 | a1i | ⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℝ+ ) |
| 24 | nnrp | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) | |
| 25 | 23 24 | rpmulcld | ⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℝ+ ) |
| 26 | 25 | sqrtgt0d | ⊢ ( 𝑛 ∈ ℕ → 0 < ( √ ‘ ( 2 · 𝑛 ) ) ) |
| 27 | 26 | gt0ne0d | ⊢ ( 𝑛 ∈ ℕ → ( √ ‘ ( 2 · 𝑛 ) ) ≠ 0 ) |
| 28 | nnne0 | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ≠ 0 ) | |
| 29 | 10 15 28 18 | divne0d | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 / e ) ≠ 0 ) |
| 30 | nnz | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℤ ) | |
| 31 | 19 29 30 | expne0d | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 / e ) ↑ 𝑛 ) ≠ 0 ) |
| 32 | 12 20 27 31 | mulne0d | ⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ≠ 0 ) |
| 33 | 8 21 32 | divcld | ⊢ ( 𝑛 ∈ ℕ → ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ∈ ℂ ) |
| 34 | 1 | fvmpt2 | ⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ∈ ℂ ) → ( 𝐴 ‘ 𝑛 ) = ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) |
| 35 | 33 34 | mpdan | ⊢ ( 𝑛 ∈ ℕ → ( 𝐴 ‘ 𝑛 ) = ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) |
| 36 | 35 | oveq1d | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) = ( ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ↑ 4 ) ) |
| 37 | 3 | fvmpt2 | ⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ∈ ℂ ) → ( 𝐸 ‘ 𝑛 ) = ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) |
| 38 | 21 37 | mpdan | ⊢ ( 𝑛 ∈ ℕ → ( 𝐸 ‘ 𝑛 ) = ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) |
| 39 | 38 | oveq1d | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) = ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ↑ 4 ) ) |
| 40 | 36 39 | oveq12d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) = ( ( ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ↑ 4 ) · ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ↑ 4 ) ) ) |
| 41 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
| 42 | 41 | a1i | ⊢ ( 𝑛 ∈ ℕ → 4 ∈ ℕ0 ) |
| 43 | 8 21 32 42 | expdivd | ⊢ ( 𝑛 ∈ ℕ → ( ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ↑ 4 ) = ( ( ( ! ‘ 𝑛 ) ↑ 4 ) / ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ↑ 4 ) ) ) |
| 44 | 43 | oveq1d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ↑ 4 ) · ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ↑ 4 ) ) = ( ( ( ( ! ‘ 𝑛 ) ↑ 4 ) / ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ↑ 4 ) ) · ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ↑ 4 ) ) ) |
| 45 | 8 42 | expcld | ⊢ ( 𝑛 ∈ ℕ → ( ( ! ‘ 𝑛 ) ↑ 4 ) ∈ ℂ ) |
| 46 | 21 42 | expcld | ⊢ ( 𝑛 ∈ ℕ → ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ↑ 4 ) ∈ ℂ ) |
| 47 | 42 | nn0zd | ⊢ ( 𝑛 ∈ ℕ → 4 ∈ ℤ ) |
| 48 | 21 32 47 | expne0d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ↑ 4 ) ≠ 0 ) |
| 49 | 45 46 48 | divcan1d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ! ‘ 𝑛 ) ↑ 4 ) / ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ↑ 4 ) ) · ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ↑ 4 ) ) = ( ( ! ‘ 𝑛 ) ↑ 4 ) ) |
| 50 | 40 44 49 | 3eqtrd | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) = ( ( ! ‘ 𝑛 ) ↑ 4 ) ) |
| 51 | 50 | eqcomd | ⊢ ( 𝑛 ∈ ℕ → ( ( ! ‘ 𝑛 ) ↑ 4 ) = ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) ) |
| 52 | 51 | oveq2d | ⊢ ( 𝑛 ∈ ℕ → ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ! ‘ 𝑛 ) ↑ 4 ) ) = ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) ) ) |
| 53 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 54 | 53 | a1i | ⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℕ0 ) |
| 55 | 54 5 | nn0mulcld | ⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℕ0 ) |
| 56 | faccl | ⊢ ( ( 2 · 𝑛 ) ∈ ℕ0 → ( ! ‘ ( 2 · 𝑛 ) ) ∈ ℕ ) | |
| 57 | nncn | ⊢ ( ( ! ‘ ( 2 · 𝑛 ) ) ∈ ℕ → ( ! ‘ ( 2 · 𝑛 ) ) ∈ ℂ ) | |
| 58 | 55 56 57 | 3syl | ⊢ ( 𝑛 ∈ ℕ → ( ! ‘ ( 2 · 𝑛 ) ) ∈ ℂ ) |
| 59 | 58 | sqcld | ⊢ ( 𝑛 ∈ ℕ → ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ∈ ℂ ) |
| 60 | 9 11 | mulcld | ⊢ ( 𝑛 ∈ ℕ → ( 2 · ( 2 · 𝑛 ) ) ∈ ℂ ) |
| 61 | 60 | sqrtcld | ⊢ ( 𝑛 ∈ ℕ → ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ∈ ℂ ) |
| 62 | 11 15 18 | divcld | ⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) / e ) ∈ ℂ ) |
| 63 | 62 55 | expcld | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ∈ ℂ ) |
| 64 | 61 63 | mulcld | ⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ∈ ℂ ) |
| 65 | 64 | sqcld | ⊢ ( 𝑛 ∈ ℕ → ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ∈ ℂ ) |
| 66 | 23 25 | rpmulcld | ⊢ ( 𝑛 ∈ ℕ → ( 2 · ( 2 · 𝑛 ) ) ∈ ℝ+ ) |
| 67 | 66 | sqrtgt0d | ⊢ ( 𝑛 ∈ ℕ → 0 < ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ) |
| 68 | 67 | gt0ne0d | ⊢ ( 𝑛 ∈ ℕ → ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ≠ 0 ) |
| 69 | 23 | rpne0d | ⊢ ( 𝑛 ∈ ℕ → 2 ≠ 0 ) |
| 70 | 9 10 69 28 | mulne0d | ⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ≠ 0 ) |
| 71 | 11 15 70 18 | divne0d | ⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) / e ) ≠ 0 ) |
| 72 | 2z | ⊢ 2 ∈ ℤ | |
| 73 | 72 | a1i | ⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℤ ) |
| 74 | 73 30 | zmulcld | ⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℤ ) |
| 75 | 62 71 74 | expne0d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ≠ 0 ) |
| 76 | 61 63 68 75 | mulne0d | ⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ≠ 0 ) |
| 77 | 64 76 73 | expne0d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ≠ 0 ) |
| 78 | 59 65 77 | divcan1d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) / ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) · ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) = ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) |
| 79 | 58 64 76 54 | expdivd | ⊢ ( 𝑛 ∈ ℕ → ( ( ( ! ‘ ( 2 · 𝑛 ) ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) ↑ 2 ) = ( ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) / ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) ) |
| 80 | 79 | eqcomd | ⊢ ( 𝑛 ∈ ℕ → ( ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) / ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) = ( ( ( ! ‘ ( 2 · 𝑛 ) ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) ↑ 2 ) ) |
| 81 | 80 | oveq1d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) / ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) · ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) = ( ( ( ( ! ‘ ( 2 · 𝑛 ) ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) ↑ 2 ) · ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) ) |
| 82 | 78 81 | eqtr3d | ⊢ ( 𝑛 ∈ ℕ → ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) = ( ( ( ( ! ‘ ( 2 · 𝑛 ) ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) ↑ 2 ) · ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) ) |
| 83 | fveq2 | ⊢ ( 𝑛 = 𝑚 → ( ! ‘ 𝑛 ) = ( ! ‘ 𝑚 ) ) | |
| 84 | oveq2 | ⊢ ( 𝑛 = 𝑚 → ( 2 · 𝑛 ) = ( 2 · 𝑚 ) ) | |
| 85 | 84 | fveq2d | ⊢ ( 𝑛 = 𝑚 → ( √ ‘ ( 2 · 𝑛 ) ) = ( √ ‘ ( 2 · 𝑚 ) ) ) |
| 86 | oveq1 | ⊢ ( 𝑛 = 𝑚 → ( 𝑛 / e ) = ( 𝑚 / e ) ) | |
| 87 | id | ⊢ ( 𝑛 = 𝑚 → 𝑛 = 𝑚 ) | |
| 88 | 86 87 | oveq12d | ⊢ ( 𝑛 = 𝑚 → ( ( 𝑛 / e ) ↑ 𝑛 ) = ( ( 𝑚 / e ) ↑ 𝑚 ) ) |
| 89 | 85 88 | oveq12d | ⊢ ( 𝑛 = 𝑚 → ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) = ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) |
| 90 | 83 89 | oveq12d | ⊢ ( 𝑛 = 𝑚 → ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) = ( ( ! ‘ 𝑚 ) / ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ) |
| 91 | 90 | cbvmptv | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( ! ‘ 𝑚 ) / ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ) |
| 92 | 1 91 | eqtri | ⊢ 𝐴 = ( 𝑚 ∈ ℕ ↦ ( ( ! ‘ 𝑚 ) / ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ) |
| 93 | fveq2 | ⊢ ( 𝑚 = ( 2 · 𝑛 ) → ( ! ‘ 𝑚 ) = ( ! ‘ ( 2 · 𝑛 ) ) ) | |
| 94 | oveq2 | ⊢ ( 𝑚 = ( 2 · 𝑛 ) → ( 2 · 𝑚 ) = ( 2 · ( 2 · 𝑛 ) ) ) | |
| 95 | 94 | fveq2d | ⊢ ( 𝑚 = ( 2 · 𝑛 ) → ( √ ‘ ( 2 · 𝑚 ) ) = ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ) |
| 96 | oveq1 | ⊢ ( 𝑚 = ( 2 · 𝑛 ) → ( 𝑚 / e ) = ( ( 2 · 𝑛 ) / e ) ) | |
| 97 | id | ⊢ ( 𝑚 = ( 2 · 𝑛 ) → 𝑚 = ( 2 · 𝑛 ) ) | |
| 98 | 96 97 | oveq12d | ⊢ ( 𝑚 = ( 2 · 𝑛 ) → ( ( 𝑚 / e ) ↑ 𝑚 ) = ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) |
| 99 | 95 98 | oveq12d | ⊢ ( 𝑚 = ( 2 · 𝑛 ) → ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) = ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) |
| 100 | 93 99 | oveq12d | ⊢ ( 𝑚 = ( 2 · 𝑛 ) → ( ( ! ‘ 𝑚 ) / ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) = ( ( ! ‘ ( 2 · 𝑛 ) ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) ) |
| 101 | 2nn | ⊢ 2 ∈ ℕ | |
| 102 | 101 | a1i | ⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℕ ) |
| 103 | id | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ ) | |
| 104 | 102 103 | nnmulcld | ⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℕ ) |
| 105 | 58 64 76 | divcld | ⊢ ( 𝑛 ∈ ℕ → ( ( ! ‘ ( 2 · 𝑛 ) ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) ∈ ℂ ) |
| 106 | 92 100 104 105 | fvmptd3 | ⊢ ( 𝑛 ∈ ℕ → ( 𝐴 ‘ ( 2 · 𝑛 ) ) = ( ( ! ‘ ( 2 · 𝑛 ) ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) ) |
| 107 | 106 | oveq1d | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝐴 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) = ( ( ( ! ‘ ( 2 · 𝑛 ) ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) ↑ 2 ) ) |
| 108 | 107 | eqcomd | ⊢ ( 𝑛 ∈ ℕ → ( ( ( ! ‘ ( 2 · 𝑛 ) ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) ↑ 2 ) = ( ( 𝐴 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) |
| 109 | 108 | oveq1d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ! ‘ ( 2 · 𝑛 ) ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) ↑ 2 ) · ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) = ( ( ( 𝐴 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) · ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) ) |
| 110 | eqidd | ⊢ ( 𝑛 ∈ ℕ → ( 𝑚 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ) | |
| 111 | 99 | adantl | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 = ( 2 · 𝑛 ) ) → ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) = ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) |
| 112 | 110 111 104 64 | fvmptd | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ‘ ( 2 · 𝑛 ) ) = ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) |
| 113 | 112 | oveq1d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑚 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ‘ ( 2 · 𝑛 ) ) ↑ 2 ) = ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) |
| 114 | 113 | eqcomd | ⊢ ( 𝑛 ∈ ℕ → ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) = ( ( ( 𝑚 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) |
| 115 | 114 | oveq2d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝐴 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) · ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) = ( ( ( 𝐴 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) · ( ( ( 𝑚 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) |
| 116 | 82 109 115 | 3eqtrd | ⊢ ( 𝑛 ∈ ℕ → ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) = ( ( ( 𝐴 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) · ( ( ( 𝑚 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) |
| 117 | 89 | cbvmptv | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) |
| 118 | 117 | a1i | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ) |
| 119 | 118 | fveq1d | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ‘ ( 2 · 𝑛 ) ) = ( ( 𝑚 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ‘ ( 2 · 𝑛 ) ) ) |
| 120 | 119 | eqcomd | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ‘ ( 2 · 𝑛 ) ) = ( ( 𝑛 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ‘ ( 2 · 𝑛 ) ) ) |
| 121 | 120 | oveq1d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑚 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ‘ ( 2 · 𝑛 ) ) ↑ 2 ) = ( ( ( 𝑛 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) |
| 122 | 121 | oveq2d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝐴 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) · ( ( ( 𝑚 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) = ( ( ( 𝐴 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) · ( ( ( 𝑛 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) |
| 123 | 106 105 | eqeltrd | ⊢ ( 𝑛 ∈ ℕ → ( 𝐴 ‘ ( 2 · 𝑛 ) ) ∈ ℂ ) |
| 124 | 2 | fvmpt2 | ⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐴 ‘ ( 2 · 𝑛 ) ) ∈ ℂ ) → ( 𝐷 ‘ 𝑛 ) = ( 𝐴 ‘ ( 2 · 𝑛 ) ) ) |
| 125 | 123 124 | mpdan | ⊢ ( 𝑛 ∈ ℕ → ( 𝐷 ‘ 𝑛 ) = ( 𝐴 ‘ ( 2 · 𝑛 ) ) ) |
| 126 | 125 | eqcomd | ⊢ ( 𝑛 ∈ ℕ → ( 𝐴 ‘ ( 2 · 𝑛 ) ) = ( 𝐷 ‘ 𝑛 ) ) |
| 127 | 126 | oveq1d | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝐴 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) = ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) |
| 128 | 3 | a1i | ⊢ ( 𝑛 ∈ ℕ → 𝐸 = ( 𝑛 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) |
| 129 | 128 | fveq1d | ⊢ ( 𝑛 ∈ ℕ → ( 𝐸 ‘ ( 2 · 𝑛 ) ) = ( ( 𝑛 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ‘ ( 2 · 𝑛 ) ) ) |
| 130 | 129 | eqcomd | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ‘ ( 2 · 𝑛 ) ) = ( 𝐸 ‘ ( 2 · 𝑛 ) ) ) |
| 131 | 130 | oveq1d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ‘ ( 2 · 𝑛 ) ) ↑ 2 ) = ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) |
| 132 | 127 131 | oveq12d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝐴 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) · ( ( ( 𝑛 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) = ( ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) · ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) |
| 133 | 116 122 132 | 3eqtrd | ⊢ ( 𝑛 ∈ ℕ → ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) = ( ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) · ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) |
| 134 | 52 133 | oveq12d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ! ‘ 𝑛 ) ↑ 4 ) ) / ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) = ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) ) / ( ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) · ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) |
| 135 | 134 | oveq1d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ! ‘ 𝑛 ) ↑ 4 ) ) / ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) ) / ( ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) · ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 136 | 135 | mpteq2ia | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ! ‘ 𝑛 ) ↑ 4 ) ) / ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) ) / ( ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) · ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 137 | 42 5 | nn0mulcld | ⊢ ( 𝑛 ∈ ℕ → ( 4 · 𝑛 ) ∈ ℕ0 ) |
| 138 | 9 137 | expcld | ⊢ ( 𝑛 ∈ ℕ → ( 2 ↑ ( 4 · 𝑛 ) ) ∈ ℂ ) |
| 139 | 50 45 | eqeltrd | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) ∈ ℂ ) |
| 140 | 138 139 | mulcomd | ⊢ ( 𝑛 ∈ ℕ → ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) ) = ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) · ( 2 ↑ ( 4 · 𝑛 ) ) ) ) |
| 141 | 140 | oveq1d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) ) / ( ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) · ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) = ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) · ( 2 ↑ ( 4 · 𝑛 ) ) ) / ( ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) · ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) |
| 142 | 141 | oveq1d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) ) / ( ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) · ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) · ( 2 ↑ ( 4 · 𝑛 ) ) ) / ( ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) · ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 143 | 125 123 | eqeltrd | ⊢ ( 𝑛 ∈ ℕ → ( 𝐷 ‘ 𝑛 ) ∈ ℂ ) |
| 144 | 143 | sqcld | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ∈ ℂ ) |
| 145 | 128 118 | eqtrd | ⊢ ( 𝑛 ∈ ℕ → 𝐸 = ( 𝑚 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ) |
| 146 | 145 111 104 64 | fvmptd | ⊢ ( 𝑛 ∈ ℕ → ( 𝐸 ‘ ( 2 · 𝑛 ) ) = ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) |
| 147 | 146 64 | eqeltrd | ⊢ ( 𝑛 ∈ ℕ → ( 𝐸 ‘ ( 2 · 𝑛 ) ) ∈ ℂ ) |
| 148 | 147 | sqcld | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ∈ ℂ ) |
| 149 | nnne0 | ⊢ ( ( ! ‘ ( 2 · 𝑛 ) ) ∈ ℕ → ( ! ‘ ( 2 · 𝑛 ) ) ≠ 0 ) | |
| 150 | 55 56 149 | 3syl | ⊢ ( 𝑛 ∈ ℕ → ( ! ‘ ( 2 · 𝑛 ) ) ≠ 0 ) |
| 151 | 58 64 150 76 | divne0d | ⊢ ( 𝑛 ∈ ℕ → ( ( ! ‘ ( 2 · 𝑛 ) ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) ≠ 0 ) |
| 152 | 106 151 | eqnetrd | ⊢ ( 𝑛 ∈ ℕ → ( 𝐴 ‘ ( 2 · 𝑛 ) ) ≠ 0 ) |
| 153 | 125 152 | eqnetrd | ⊢ ( 𝑛 ∈ ℕ → ( 𝐷 ‘ 𝑛 ) ≠ 0 ) |
| 154 | 143 153 73 | expne0d | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ≠ 0 ) |
| 155 | 146 76 | eqnetrd | ⊢ ( 𝑛 ∈ ℕ → ( 𝐸 ‘ ( 2 · 𝑛 ) ) ≠ 0 ) |
| 156 | 147 155 73 | expne0d | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ≠ 0 ) |
| 157 | 139 144 138 148 154 156 | divmuldivd | ⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) = ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) · ( 2 ↑ ( 4 · 𝑛 ) ) ) / ( ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) · ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) |
| 158 | 157 | eqcomd | ⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) · ( 2 ↑ ( 4 · 𝑛 ) ) ) / ( ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) · ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) = ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) |
| 159 | 158 | oveq1d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) · ( 2 ↑ ( 4 · 𝑛 ) ) ) / ( ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) · ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 160 | 35 33 | eqeltrd | ⊢ ( 𝑛 ∈ ℕ → ( 𝐴 ‘ 𝑛 ) ∈ ℂ ) |
| 161 | 160 42 | expcld | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ∈ ℂ ) |
| 162 | 39 46 | eqeltrd | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ∈ ℂ ) |
| 163 | 161 162 144 154 | div23d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) = ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) ) |
| 164 | 163 | oveq1d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) = ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) |
| 165 | 164 | oveq1d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 166 | 161 144 154 | divcld | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ∈ ℂ ) |
| 167 | 138 148 156 | divcld | ⊢ ( 𝑛 ∈ ℕ → ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ∈ ℂ ) |
| 168 | 166 162 167 | mulassd | ⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) = ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) ) |
| 169 | 168 | oveq1d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 170 | 162 167 | mulcld | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ∈ ℂ ) |
| 171 | 1cnd | ⊢ ( 𝑛 ∈ ℕ → 1 ∈ ℂ ) | |
| 172 | 11 171 | addcld | ⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) + 1 ) ∈ ℂ ) |
| 173 | 0red | ⊢ ( 𝑛 ∈ ℕ → 0 ∈ ℝ ) | |
| 174 | 104 | nnred | ⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℝ ) |
| 175 | 2re | ⊢ 2 ∈ ℝ | |
| 176 | 175 | a1i | ⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℝ ) |
| 177 | nnre | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ ) | |
| 178 | 176 177 | remulcld | ⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℝ ) |
| 179 | 1red | ⊢ ( 𝑛 ∈ ℕ → 1 ∈ ℝ ) | |
| 180 | 178 179 | readdcld | ⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) + 1 ) ∈ ℝ ) |
| 181 | 104 | nngt0d | ⊢ ( 𝑛 ∈ ℕ → 0 < ( 2 · 𝑛 ) ) |
| 182 | 174 | ltp1d | ⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) < ( ( 2 · 𝑛 ) + 1 ) ) |
| 183 | 173 174 180 181 182 | lttrd | ⊢ ( 𝑛 ∈ ℕ → 0 < ( ( 2 · 𝑛 ) + 1 ) ) |
| 184 | 183 | gt0ne0d | ⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) + 1 ) ≠ 0 ) |
| 185 | 166 170 172 184 | divassd | ⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
| 186 | 162 138 148 156 | div12d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) = ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) |
| 187 | 12 20 42 | mulexpd | ⊢ ( 𝑛 ∈ ℕ → ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ↑ 4 ) = ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) · ( ( ( 𝑛 / e ) ↑ 𝑛 ) ↑ 4 ) ) ) |
| 188 | 61 63 | sqmuld | ⊢ ( 𝑛 ∈ ℕ → ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) = ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) · ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) |
| 189 | 187 188 | oveq12d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ↑ 4 ) / ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) = ( ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) · ( ( ( 𝑛 / e ) ↑ 𝑛 ) ↑ 4 ) ) / ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) · ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) |
| 190 | 146 | oveq1d | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) = ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) |
| 191 | 39 190 | oveq12d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) = ( ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ↑ 4 ) / ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) ) |
| 192 | 12 42 | expcld | ⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) ∈ ℂ ) |
| 193 | 61 | sqcld | ⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) ∈ ℂ ) |
| 194 | 20 42 | expcld | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 / e ) ↑ 𝑛 ) ↑ 4 ) ∈ ℂ ) |
| 195 | 63 | sqcld | ⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) ∈ ℂ ) |
| 196 | 61 68 73 | expne0d | ⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) ≠ 0 ) |
| 197 | 63 75 73 | expne0d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) ≠ 0 ) |
| 198 | 192 193 194 195 196 197 | divmuldivd | ⊢ ( 𝑛 ∈ ℕ → ( ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) ) · ( ( ( ( 𝑛 / e ) ↑ 𝑛 ) ↑ 4 ) / ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) = ( ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) · ( ( ( 𝑛 / e ) ↑ 𝑛 ) ↑ 4 ) ) / ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) · ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) |
| 199 | 189 191 198 | 3eqtr4d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) = ( ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) ) · ( ( ( ( 𝑛 / e ) ↑ 𝑛 ) ↑ 4 ) / ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) |
| 200 | 199 | oveq2d | ⊢ ( 𝑛 ∈ ℕ → ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) = ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) ) · ( ( ( ( 𝑛 / e ) ↑ 𝑛 ) ↑ 4 ) / ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) ) |
| 201 | 66 | rprege0d | ⊢ ( 𝑛 ∈ ℕ → ( ( 2 · ( 2 · 𝑛 ) ) ∈ ℝ ∧ 0 ≤ ( 2 · ( 2 · 𝑛 ) ) ) ) |
| 202 | resqrtth | ⊢ ( ( ( 2 · ( 2 · 𝑛 ) ) ∈ ℝ ∧ 0 ≤ ( 2 · ( 2 · 𝑛 ) ) ) → ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) = ( 2 · ( 2 · 𝑛 ) ) ) | |
| 203 | 201 202 | syl | ⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) = ( 2 · ( 2 · 𝑛 ) ) ) |
| 204 | 203 | oveq2d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) ) = ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) / ( 2 · ( 2 · 𝑛 ) ) ) ) |
| 205 | 2t2e4 | ⊢ ( 2 · 2 ) = 4 | |
| 206 | 205 | eqcomi | ⊢ 4 = ( 2 · 2 ) |
| 207 | 206 | a1i | ⊢ ( 𝑛 ∈ ℕ → 4 = ( 2 · 2 ) ) |
| 208 | 207 | oveq2d | ⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) = ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ ( 2 · 2 ) ) ) |
| 209 | 12 54 54 | expmuld | ⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ ( 2 · 2 ) ) = ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ↑ 2 ) ) |
| 210 | 25 | rprege0d | ⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) ∈ ℝ ∧ 0 ≤ ( 2 · 𝑛 ) ) ) |
| 211 | resqrtth | ⊢ ( ( ( 2 · 𝑛 ) ∈ ℝ ∧ 0 ≤ ( 2 · 𝑛 ) ) → ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 2 ) = ( 2 · 𝑛 ) ) | |
| 212 | 210 211 | syl | ⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 2 ) = ( 2 · 𝑛 ) ) |
| 213 | 212 | oveq1d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ↑ 2 ) = ( ( 2 · 𝑛 ) ↑ 2 ) ) |
| 214 | 208 209 213 | 3eqtrd | ⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) = ( ( 2 · 𝑛 ) ↑ 2 ) ) |
| 215 | 9 9 10 | mulassd | ⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 2 ) · 𝑛 ) = ( 2 · ( 2 · 𝑛 ) ) ) |
| 216 | 205 | a1i | ⊢ ( 𝑛 ∈ ℕ → ( 2 · 2 ) = 4 ) |
| 217 | 216 | oveq1d | ⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 2 ) · 𝑛 ) = ( 4 · 𝑛 ) ) |
| 218 | 215 217 | eqtr3d | ⊢ ( 𝑛 ∈ ℕ → ( 2 · ( 2 · 𝑛 ) ) = ( 4 · 𝑛 ) ) |
| 219 | 214 218 | oveq12d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) / ( 2 · ( 2 · 𝑛 ) ) ) = ( ( ( 2 · 𝑛 ) ↑ 2 ) / ( 4 · 𝑛 ) ) ) |
| 220 | 9 10 | sqmuld | ⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) ↑ 2 ) = ( ( 2 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) |
| 221 | sq2 | ⊢ ( 2 ↑ 2 ) = 4 | |
| 222 | 221 | a1i | ⊢ ( 𝑛 ∈ ℕ → ( 2 ↑ 2 ) = 4 ) |
| 223 | 222 | oveq1d | ⊢ ( 𝑛 ∈ ℕ → ( ( 2 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) = ( 4 · ( 𝑛 ↑ 2 ) ) ) |
| 224 | 220 223 | eqtrd | ⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) ↑ 2 ) = ( 4 · ( 𝑛 ↑ 2 ) ) ) |
| 225 | 224 | oveq1d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 2 · 𝑛 ) ↑ 2 ) / ( 4 · 𝑛 ) ) = ( ( 4 · ( 𝑛 ↑ 2 ) ) / ( 4 · 𝑛 ) ) ) |
| 226 | 4cn | ⊢ 4 ∈ ℂ | |
| 227 | 4ne0 | ⊢ 4 ≠ 0 | |
| 228 | 226 227 | dividi | ⊢ ( 4 / 4 ) = 1 |
| 229 | 228 | a1i | ⊢ ( 𝑛 ∈ ℕ → ( 4 / 4 ) = 1 ) |
| 230 | 10 | sqvald | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ↑ 2 ) = ( 𝑛 · 𝑛 ) ) |
| 231 | 230 | oveq1d | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ 2 ) / 𝑛 ) = ( ( 𝑛 · 𝑛 ) / 𝑛 ) ) |
| 232 | 10 10 28 | divcan4d | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 · 𝑛 ) / 𝑛 ) = 𝑛 ) |
| 233 | 231 232 | eqtrd | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ 2 ) / 𝑛 ) = 𝑛 ) |
| 234 | 229 233 | oveq12d | ⊢ ( 𝑛 ∈ ℕ → ( ( 4 / 4 ) · ( ( 𝑛 ↑ 2 ) / 𝑛 ) ) = ( 1 · 𝑛 ) ) |
| 235 | 42 | nn0cnd | ⊢ ( 𝑛 ∈ ℕ → 4 ∈ ℂ ) |
| 236 | 10 | sqcld | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ↑ 2 ) ∈ ℂ ) |
| 237 | 227 | a1i | ⊢ ( 𝑛 ∈ ℕ → 4 ≠ 0 ) |
| 238 | 235 235 236 10 237 28 | divmuldivd | ⊢ ( 𝑛 ∈ ℕ → ( ( 4 / 4 ) · ( ( 𝑛 ↑ 2 ) / 𝑛 ) ) = ( ( 4 · ( 𝑛 ↑ 2 ) ) / ( 4 · 𝑛 ) ) ) |
| 239 | 10 | mullidd | ⊢ ( 𝑛 ∈ ℕ → ( 1 · 𝑛 ) = 𝑛 ) |
| 240 | 234 238 239 | 3eqtr3d | ⊢ ( 𝑛 ∈ ℕ → ( ( 4 · ( 𝑛 ↑ 2 ) ) / ( 4 · 𝑛 ) ) = 𝑛 ) |
| 241 | 225 240 | eqtrd | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 2 · 𝑛 ) ↑ 2 ) / ( 4 · 𝑛 ) ) = 𝑛 ) |
| 242 | 204 219 241 | 3eqtrd | ⊢ ( 𝑛 ∈ ℕ → ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) ) = 𝑛 ) |
| 243 | 10 235 | mulcomd | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 · 4 ) = ( 4 · 𝑛 ) ) |
| 244 | 243 | oveq2d | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 / e ) ↑ ( 𝑛 · 4 ) ) = ( ( 𝑛 / e ) ↑ ( 4 · 𝑛 ) ) ) |
| 245 | 19 42 5 | expmuld | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 / e ) ↑ ( 𝑛 · 4 ) ) = ( ( ( 𝑛 / e ) ↑ 𝑛 ) ↑ 4 ) ) |
| 246 | 10 15 18 137 | expdivd | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 / e ) ↑ ( 4 · 𝑛 ) ) = ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( e ↑ ( 4 · 𝑛 ) ) ) ) |
| 247 | 244 245 246 | 3eqtr3d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 / e ) ↑ 𝑛 ) ↑ 4 ) = ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( e ↑ ( 4 · 𝑛 ) ) ) ) |
| 248 | 9 10 9 | mul32d | ⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) · 2 ) = ( ( 2 · 2 ) · 𝑛 ) ) |
| 249 | 248 217 | eqtrd | ⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) · 2 ) = ( 4 · 𝑛 ) ) |
| 250 | 249 | oveq2d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 2 · 𝑛 ) / e ) ↑ ( ( 2 · 𝑛 ) · 2 ) ) = ( ( ( 2 · 𝑛 ) / e ) ↑ ( 4 · 𝑛 ) ) ) |
| 251 | 62 54 55 | expmuld | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 2 · 𝑛 ) / e ) ↑ ( ( 2 · 𝑛 ) · 2 ) ) = ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) ) |
| 252 | 11 15 18 137 | expdivd | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 2 · 𝑛 ) / e ) ↑ ( 4 · 𝑛 ) ) = ( ( ( 2 · 𝑛 ) ↑ ( 4 · 𝑛 ) ) / ( e ↑ ( 4 · 𝑛 ) ) ) ) |
| 253 | 250 251 252 | 3eqtr3d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) = ( ( ( 2 · 𝑛 ) ↑ ( 4 · 𝑛 ) ) / ( e ↑ ( 4 · 𝑛 ) ) ) ) |
| 254 | 247 253 | oveq12d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 𝑛 / e ) ↑ 𝑛 ) ↑ 4 ) / ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) ) = ( ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( e ↑ ( 4 · 𝑛 ) ) ) / ( ( ( 2 · 𝑛 ) ↑ ( 4 · 𝑛 ) ) / ( e ↑ ( 4 · 𝑛 ) ) ) ) ) |
| 255 | 247 194 | eqeltrrd | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( e ↑ ( 4 · 𝑛 ) ) ) ∈ ℂ ) |
| 256 | 11 137 | expcld | ⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) ↑ ( 4 · 𝑛 ) ) ∈ ℂ ) |
| 257 | 15 137 | expcld | ⊢ ( 𝑛 ∈ ℕ → ( e ↑ ( 4 · 𝑛 ) ) ∈ ℂ ) |
| 258 | 47 30 | zmulcld | ⊢ ( 𝑛 ∈ ℕ → ( 4 · 𝑛 ) ∈ ℤ ) |
| 259 | 11 70 258 | expne0d | ⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) ↑ ( 4 · 𝑛 ) ) ≠ 0 ) |
| 260 | 15 18 258 | expne0d | ⊢ ( 𝑛 ∈ ℕ → ( e ↑ ( 4 · 𝑛 ) ) ≠ 0 ) |
| 261 | 255 256 257 259 260 | divdiv2d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( e ↑ ( 4 · 𝑛 ) ) ) / ( ( ( 2 · 𝑛 ) ↑ ( 4 · 𝑛 ) ) / ( e ↑ ( 4 · 𝑛 ) ) ) ) = ( ( ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( e ↑ ( 4 · 𝑛 ) ) ) · ( e ↑ ( 4 · 𝑛 ) ) ) / ( ( 2 · 𝑛 ) ↑ ( 4 · 𝑛 ) ) ) ) |
| 262 | 10 137 | expcld | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ↑ ( 4 · 𝑛 ) ) ∈ ℂ ) |
| 263 | 262 257 260 | divcan1d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( e ↑ ( 4 · 𝑛 ) ) ) · ( e ↑ ( 4 · 𝑛 ) ) ) = ( 𝑛 ↑ ( 4 · 𝑛 ) ) ) |
| 264 | 263 | oveq1d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( e ↑ ( 4 · 𝑛 ) ) ) · ( e ↑ ( 4 · 𝑛 ) ) ) / ( ( 2 · 𝑛 ) ↑ ( 4 · 𝑛 ) ) ) = ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( ( 2 · 𝑛 ) ↑ ( 4 · 𝑛 ) ) ) ) |
| 265 | 9 10 137 | mulexpd | ⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) ↑ ( 4 · 𝑛 ) ) = ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( 𝑛 ↑ ( 4 · 𝑛 ) ) ) ) |
| 266 | 265 | oveq2d | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( ( 2 · 𝑛 ) ↑ ( 4 · 𝑛 ) ) ) = ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( 𝑛 ↑ ( 4 · 𝑛 ) ) ) ) ) |
| 267 | 138 262 | mulcomd | ⊢ ( 𝑛 ∈ ℕ → ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( 𝑛 ↑ ( 4 · 𝑛 ) ) ) = ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) · ( 2 ↑ ( 4 · 𝑛 ) ) ) ) |
| 268 | 267 | oveq2d | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( 𝑛 ↑ ( 4 · 𝑛 ) ) ) ) = ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) · ( 2 ↑ ( 4 · 𝑛 ) ) ) ) ) |
| 269 | 10 28 258 | expne0d | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ↑ ( 4 · 𝑛 ) ) ≠ 0 ) |
| 270 | 9 69 258 | expne0d | ⊢ ( 𝑛 ∈ ℕ → ( 2 ↑ ( 4 · 𝑛 ) ) ≠ 0 ) |
| 271 | 262 262 138 269 270 | divdiv1d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( 𝑛 ↑ ( 4 · 𝑛 ) ) ) / ( 2 ↑ ( 4 · 𝑛 ) ) ) = ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) · ( 2 ↑ ( 4 · 𝑛 ) ) ) ) ) |
| 272 | 262 269 | dividd | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( 𝑛 ↑ ( 4 · 𝑛 ) ) ) = 1 ) |
| 273 | 272 | oveq1d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( 𝑛 ↑ ( 4 · 𝑛 ) ) ) / ( 2 ↑ ( 4 · 𝑛 ) ) ) = ( 1 / ( 2 ↑ ( 4 · 𝑛 ) ) ) ) |
| 274 | 268 271 273 | 3eqtr2d | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( 𝑛 ↑ ( 4 · 𝑛 ) ) ) ) = ( 1 / ( 2 ↑ ( 4 · 𝑛 ) ) ) ) |
| 275 | 264 266 274 | 3eqtrd | ⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( e ↑ ( 4 · 𝑛 ) ) ) · ( e ↑ ( 4 · 𝑛 ) ) ) / ( ( 2 · 𝑛 ) ↑ ( 4 · 𝑛 ) ) ) = ( 1 / ( 2 ↑ ( 4 · 𝑛 ) ) ) ) |
| 276 | 254 261 275 | 3eqtrd | ⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 𝑛 / e ) ↑ 𝑛 ) ↑ 4 ) / ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) ) = ( 1 / ( 2 ↑ ( 4 · 𝑛 ) ) ) ) |
| 277 | 242 276 | oveq12d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) ) · ( ( ( ( 𝑛 / e ) ↑ 𝑛 ) ↑ 4 ) / ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) = ( 𝑛 · ( 1 / ( 2 ↑ ( 4 · 𝑛 ) ) ) ) ) |
| 278 | 277 | oveq2d | ⊢ ( 𝑛 ∈ ℕ → ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) ) · ( ( ( ( 𝑛 / e ) ↑ 𝑛 ) ↑ 4 ) / ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) = ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( 𝑛 · ( 1 / ( 2 ↑ ( 4 · 𝑛 ) ) ) ) ) ) |
| 279 | 138 270 | reccld | ⊢ ( 𝑛 ∈ ℕ → ( 1 / ( 2 ↑ ( 4 · 𝑛 ) ) ) ∈ ℂ ) |
| 280 | 138 10 279 | mul12d | ⊢ ( 𝑛 ∈ ℕ → ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( 𝑛 · ( 1 / ( 2 ↑ ( 4 · 𝑛 ) ) ) ) ) = ( 𝑛 · ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( 1 / ( 2 ↑ ( 4 · 𝑛 ) ) ) ) ) ) |
| 281 | 10 | mulridd | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 · 1 ) = 𝑛 ) |
| 282 | 138 270 | recidd | ⊢ ( 𝑛 ∈ ℕ → ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( 1 / ( 2 ↑ ( 4 · 𝑛 ) ) ) ) = 1 ) |
| 283 | 282 | oveq2d | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 · ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( 1 / ( 2 ↑ ( 4 · 𝑛 ) ) ) ) ) = ( 𝑛 · 1 ) ) |
| 284 | 281 283 233 | 3eqtr4d | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 · ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( 1 / ( 2 ↑ ( 4 · 𝑛 ) ) ) ) ) = ( ( 𝑛 ↑ 2 ) / 𝑛 ) ) |
| 285 | 278 280 284 | 3eqtrd | ⊢ ( 𝑛 ∈ ℕ → ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) ) · ( ( ( ( 𝑛 / e ) ↑ 𝑛 ) ↑ 4 ) / ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) = ( ( 𝑛 ↑ 2 ) / 𝑛 ) ) |
| 286 | 186 200 285 | 3eqtrd | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) = ( ( 𝑛 ↑ 2 ) / 𝑛 ) ) |
| 287 | 286 | oveq1d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( ( ( 𝑛 ↑ 2 ) / 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 288 | 236 10 172 28 184 | divdiv1d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 ↑ 2 ) / 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
| 289 | 287 288 | eqtrd | ⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
| 290 | 289 | oveq2d | ⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) = ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
| 291 | 185 290 | eqtrd | ⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
| 292 | 165 169 291 | 3eqtrd | ⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
| 293 | 142 159 292 | 3eqtrd | ⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) ) / ( ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) · ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
| 294 | 293 | mpteq2ia | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) ) / ( ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) · ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
| 295 | 4 136 294 | 3eqtri | ⊢ 𝑉 = ( 𝑛 ∈ ℕ ↦ ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |