This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for sqreu : write a general complex square root in terms of the square root function over nonnegative reals. (Contributed by Mario Carneiro, 9-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sqrteulem.1 | ⊢ 𝐵 = ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) | |
| Assertion | sqreulem | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( 𝐵 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ∧ ( i · 𝐵 ) ∉ ℝ+ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqrteulem.1 | ⊢ 𝐵 = ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) | |
| 2 | 1 | oveq1i | ⊢ ( 𝐵 ↑ 2 ) = ( ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ↑ 2 ) |
| 3 | abscl | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) | |
| 4 | absge0 | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( abs ‘ 𝐴 ) ) | |
| 5 | resqrtcl | ⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) → ( √ ‘ ( abs ‘ 𝐴 ) ) ∈ ℝ ) | |
| 6 | 3 4 5 | syl2anc | ⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( abs ‘ 𝐴 ) ) ∈ ℝ ) |
| 7 | 6 | recnd | ⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( abs ‘ 𝐴 ) ) ∈ ℂ ) |
| 8 | 7 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( √ ‘ ( abs ‘ 𝐴 ) ) ∈ ℂ ) |
| 9 | 3 | recnd | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 10 | addcl | ⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( abs ‘ 𝐴 ) + 𝐴 ) ∈ ℂ ) | |
| 11 | 9 10 | mpancom | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) + 𝐴 ) ∈ ℂ ) |
| 12 | 11 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( abs ‘ 𝐴 ) + 𝐴 ) ∈ ℂ ) |
| 13 | abscl | ⊢ ( ( ( abs ‘ 𝐴 ) + 𝐴 ) ∈ ℂ → ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ∈ ℝ ) | |
| 14 | 11 13 | syl | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ∈ ℝ ) |
| 15 | 14 | recnd | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ∈ ℂ ) |
| 16 | 15 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ∈ ℂ ) |
| 17 | 11 | abs00ad | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) = 0 ↔ ( ( abs ‘ 𝐴 ) + 𝐴 ) = 0 ) ) |
| 18 | 17 | necon3bid | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ≠ 0 ↔ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) ) |
| 19 | 18 | biimpar | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ≠ 0 ) |
| 20 | 12 16 19 | divcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ∈ ℂ ) |
| 21 | 8 20 | sqmuld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ↑ 2 ) = ( ( ( √ ‘ ( abs ‘ 𝐴 ) ) ↑ 2 ) · ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ↑ 2 ) ) ) |
| 22 | 2 21 | eqtrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( 𝐵 ↑ 2 ) = ( ( ( √ ‘ ( abs ‘ 𝐴 ) ) ↑ 2 ) · ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ↑ 2 ) ) ) |
| 23 | 3 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 24 | 4 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → 0 ≤ ( abs ‘ 𝐴 ) ) |
| 25 | resqrtth | ⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) → ( ( √ ‘ ( abs ‘ 𝐴 ) ) ↑ 2 ) = ( abs ‘ 𝐴 ) ) | |
| 26 | 23 24 25 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( √ ‘ ( abs ‘ 𝐴 ) ) ↑ 2 ) = ( abs ‘ 𝐴 ) ) |
| 27 | 12 16 19 | sqdivd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ↑ 2 ) = ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) ↑ 2 ) / ( ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ↑ 2 ) ) ) |
| 28 | absvalsq | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) | |
| 29 | 2cn | ⊢ 2 ∈ ℂ | |
| 30 | mulass | ⊢ ( ( 2 ∈ ℂ ∧ ( abs ‘ 𝐴 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 2 · ( abs ‘ 𝐴 ) ) · 𝐴 ) = ( 2 · ( ( abs ‘ 𝐴 ) · 𝐴 ) ) ) | |
| 31 | 29 30 | mp3an1 | ⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 2 · ( abs ‘ 𝐴 ) ) · 𝐴 ) = ( 2 · ( ( abs ‘ 𝐴 ) · 𝐴 ) ) ) |
| 32 | 9 31 | mpancom | ⊢ ( 𝐴 ∈ ℂ → ( ( 2 · ( abs ‘ 𝐴 ) ) · 𝐴 ) = ( 2 · ( ( abs ‘ 𝐴 ) · 𝐴 ) ) ) |
| 33 | mulcl | ⊢ ( ( 2 ∈ ℂ ∧ ( abs ‘ 𝐴 ) ∈ ℂ ) → ( 2 · ( abs ‘ 𝐴 ) ) ∈ ℂ ) | |
| 34 | 29 9 33 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( 2 · ( abs ‘ 𝐴 ) ) ∈ ℂ ) |
| 35 | mulcom | ⊢ ( ( ( 2 · ( abs ‘ 𝐴 ) ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 2 · ( abs ‘ 𝐴 ) ) · 𝐴 ) = ( 𝐴 · ( 2 · ( abs ‘ 𝐴 ) ) ) ) | |
| 36 | 34 35 | mpancom | ⊢ ( 𝐴 ∈ ℂ → ( ( 2 · ( abs ‘ 𝐴 ) ) · 𝐴 ) = ( 𝐴 · ( 2 · ( abs ‘ 𝐴 ) ) ) ) |
| 37 | 32 36 | eqtr3d | ⊢ ( 𝐴 ∈ ℂ → ( 2 · ( ( abs ‘ 𝐴 ) · 𝐴 ) ) = ( 𝐴 · ( 2 · ( abs ‘ 𝐴 ) ) ) ) |
| 38 | 28 37 | oveq12d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) + ( 2 · ( ( abs ‘ 𝐴 ) · 𝐴 ) ) ) = ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) + ( 𝐴 · ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) |
| 39 | cjcl | ⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) ∈ ℂ ) | |
| 40 | adddi | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ∗ ‘ 𝐴 ) ∈ ℂ ∧ ( 2 · ( abs ‘ 𝐴 ) ) ∈ ℂ ) → ( 𝐴 · ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) ) = ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) + ( 𝐴 · ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) | |
| 41 | 39 34 40 | mpd3an23 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) ) = ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) + ( 𝐴 · ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) |
| 42 | 38 41 | eqtr4d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) + ( 2 · ( ( abs ‘ 𝐴 ) · 𝐴 ) ) ) = ( 𝐴 · ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) |
| 43 | sqval | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) ) | |
| 44 | 42 43 | oveq12d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( ( abs ‘ 𝐴 ) ↑ 2 ) + ( 2 · ( ( abs ‘ 𝐴 ) · 𝐴 ) ) ) + ( 𝐴 ↑ 2 ) ) = ( ( 𝐴 · ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) ) + ( 𝐴 · 𝐴 ) ) ) |
| 45 | binom2 | ⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( ( abs ‘ 𝐴 ) + 𝐴 ) ↑ 2 ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 2 ) + ( 2 · ( ( abs ‘ 𝐴 ) · 𝐴 ) ) ) + ( 𝐴 ↑ 2 ) ) ) | |
| 46 | 9 45 | mpancom | ⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) + 𝐴 ) ↑ 2 ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 2 ) + ( 2 · ( ( abs ‘ 𝐴 ) · 𝐴 ) ) ) + ( 𝐴 ↑ 2 ) ) ) |
| 47 | id | ⊢ ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ ) | |
| 48 | 39 34 | addcld | ⊢ ( 𝐴 ∈ ℂ → ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 49 | 47 48 47 | adddid | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) = ( ( 𝐴 · ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) ) + ( 𝐴 · 𝐴 ) ) ) |
| 50 | 44 46 49 | 3eqtr4d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) + 𝐴 ) ↑ 2 ) = ( 𝐴 · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) |
| 51 | 9 34 | mulcld | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) · ( 2 · ( abs ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 52 | 9 39 | mulcld | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) · ( ∗ ‘ 𝐴 ) ) ∈ ℂ ) |
| 53 | 51 52 | addcomd | ⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) · ( 2 · ( abs ‘ 𝐴 ) ) ) + ( ( abs ‘ 𝐴 ) · ( ∗ ‘ 𝐴 ) ) ) = ( ( ( abs ‘ 𝐴 ) · ( ∗ ‘ 𝐴 ) ) + ( ( abs ‘ 𝐴 ) · ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) |
| 54 | 9 9 | mulcld | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) ∈ ℂ ) |
| 55 | 54 | 2timesd | ⊢ ( 𝐴 ∈ ℂ → ( 2 · ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) ) = ( ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) + ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) ) ) |
| 56 | mul12 | ⊢ ( ( 2 ∈ ℂ ∧ ( abs ‘ 𝐴 ) ∈ ℂ ∧ ( abs ‘ 𝐴 ) ∈ ℂ ) → ( 2 · ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) ) = ( ( abs ‘ 𝐴 ) · ( 2 · ( abs ‘ 𝐴 ) ) ) ) | |
| 57 | 29 9 9 56 | mp3an2i | ⊢ ( 𝐴 ∈ ℂ → ( 2 · ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) ) = ( ( abs ‘ 𝐴 ) · ( 2 · ( abs ‘ 𝐴 ) ) ) ) |
| 58 | 9 | sqvald | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) ) |
| 59 | mulcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ∗ ‘ 𝐴 ) ∈ ℂ ) → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) = ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ) | |
| 60 | 39 59 | mpdan | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) = ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ) |
| 61 | 28 58 60 | 3eqtr3d | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) = ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ) |
| 62 | 61 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) + ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) ) = ( ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) + ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ) ) |
| 63 | 55 57 62 | 3eqtr3rd | ⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) + ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ) = ( ( abs ‘ 𝐴 ) · ( 2 · ( abs ‘ 𝐴 ) ) ) ) |
| 64 | 63 | oveq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) + ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ) + ( ( abs ‘ 𝐴 ) · ( ∗ ‘ 𝐴 ) ) ) = ( ( ( abs ‘ 𝐴 ) · ( 2 · ( abs ‘ 𝐴 ) ) ) + ( ( abs ‘ 𝐴 ) · ( ∗ ‘ 𝐴 ) ) ) ) |
| 65 | 9 39 34 | adddid | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) · ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) ) = ( ( ( abs ‘ 𝐴 ) · ( ∗ ‘ 𝐴 ) ) + ( ( abs ‘ 𝐴 ) · ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) |
| 66 | 53 64 65 | 3eqtr4d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) + ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ) + ( ( abs ‘ 𝐴 ) · ( ∗ ‘ 𝐴 ) ) ) = ( ( abs ‘ 𝐴 ) · ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) |
| 67 | 66 | oveq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) + ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ) + ( ( abs ‘ 𝐴 ) · ( ∗ ‘ 𝐴 ) ) ) + ( ( abs ‘ 𝐴 ) · 𝐴 ) ) = ( ( ( abs ‘ 𝐴 ) · ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) ) + ( ( abs ‘ 𝐴 ) · 𝐴 ) ) ) |
| 68 | cjadd | ⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) = ( ( ∗ ‘ ( abs ‘ 𝐴 ) ) + ( ∗ ‘ 𝐴 ) ) ) | |
| 69 | 9 68 | mpancom | ⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) = ( ( ∗ ‘ ( abs ‘ 𝐴 ) ) + ( ∗ ‘ 𝐴 ) ) ) |
| 70 | 3 | cjred | ⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ ( abs ‘ 𝐴 ) ) = ( abs ‘ 𝐴 ) ) |
| 71 | 70 | oveq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( ∗ ‘ ( abs ‘ 𝐴 ) ) + ( ∗ ‘ 𝐴 ) ) = ( ( abs ‘ 𝐴 ) + ( ∗ ‘ 𝐴 ) ) ) |
| 72 | 69 71 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) = ( ( abs ‘ 𝐴 ) + ( ∗ ‘ 𝐴 ) ) ) |
| 73 | 72 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) + 𝐴 ) · ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) = ( ( ( abs ‘ 𝐴 ) + 𝐴 ) · ( ( abs ‘ 𝐴 ) + ( ∗ ‘ 𝐴 ) ) ) ) |
| 74 | 9 47 9 39 | muladdd | ⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) + 𝐴 ) · ( ( abs ‘ 𝐴 ) + ( ∗ ‘ 𝐴 ) ) ) = ( ( ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) + ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ) + ( ( ( abs ‘ 𝐴 ) · ( ∗ ‘ 𝐴 ) ) + ( ( abs ‘ 𝐴 ) · 𝐴 ) ) ) ) |
| 75 | 73 74 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) + 𝐴 ) · ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) = ( ( ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) + ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ) + ( ( ( abs ‘ 𝐴 ) · ( ∗ ‘ 𝐴 ) ) + ( ( abs ‘ 𝐴 ) · 𝐴 ) ) ) ) |
| 76 | absvalsq | ⊢ ( ( ( abs ‘ 𝐴 ) + 𝐴 ) ∈ ℂ → ( ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ↑ 2 ) = ( ( ( abs ‘ 𝐴 ) + 𝐴 ) · ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) | |
| 77 | 11 76 | syl | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ↑ 2 ) = ( ( ( abs ‘ 𝐴 ) + 𝐴 ) · ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) |
| 78 | mulcl | ⊢ ( ( ( ∗ ‘ 𝐴 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ∈ ℂ ) | |
| 79 | 39 78 | mpancom | ⊢ ( 𝐴 ∈ ℂ → ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ∈ ℂ ) |
| 80 | 54 79 | addcld | ⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) + ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ) ∈ ℂ ) |
| 81 | mulcl | ⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( abs ‘ 𝐴 ) · 𝐴 ) ∈ ℂ ) | |
| 82 | 9 81 | mpancom | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) · 𝐴 ) ∈ ℂ ) |
| 83 | 80 52 82 | addassd | ⊢ ( 𝐴 ∈ ℂ → ( ( ( ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) + ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ) + ( ( abs ‘ 𝐴 ) · ( ∗ ‘ 𝐴 ) ) ) + ( ( abs ‘ 𝐴 ) · 𝐴 ) ) = ( ( ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) + ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ) + ( ( ( abs ‘ 𝐴 ) · ( ∗ ‘ 𝐴 ) ) + ( ( abs ‘ 𝐴 ) · 𝐴 ) ) ) ) |
| 84 | 75 77 83 | 3eqtr4d | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ↑ 2 ) = ( ( ( ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) + ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ) + ( ( abs ‘ 𝐴 ) · ( ∗ ‘ 𝐴 ) ) ) + ( ( abs ‘ 𝐴 ) · 𝐴 ) ) ) |
| 85 | 9 48 47 | adddid | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) = ( ( ( abs ‘ 𝐴 ) · ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) ) + ( ( abs ‘ 𝐴 ) · 𝐴 ) ) ) |
| 86 | 67 84 85 | 3eqtr4d | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ↑ 2 ) = ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) |
| 87 | 50 86 | oveq12d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) ↑ 2 ) / ( ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ↑ 2 ) ) = ( ( 𝐴 · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) / ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) ) |
| 88 | 87 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) ↑ 2 ) / ( ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ↑ 2 ) ) = ( ( 𝐴 · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) / ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) ) |
| 89 | 27 88 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ↑ 2 ) = ( ( 𝐴 · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) / ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) ) |
| 90 | 26 89 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( ( √ ‘ ( abs ‘ 𝐴 ) ) ↑ 2 ) · ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ↑ 2 ) ) = ( ( abs ‘ 𝐴 ) · ( ( 𝐴 · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) / ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) ) ) |
| 91 | addcl | ⊢ ( ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ∈ ℂ ) | |
| 92 | 48 91 | mpancom | ⊢ ( 𝐴 ∈ ℂ → ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ∈ ℂ ) |
| 93 | 9 47 92 | mul12d | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) · ( 𝐴 · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) = ( 𝐴 · ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) ) |
| 94 | 93 | oveq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) · ( 𝐴 · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) / ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) = ( ( 𝐴 · ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) / ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) ) |
| 95 | 94 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( ( abs ‘ 𝐴 ) · ( 𝐴 · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) / ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) = ( ( 𝐴 · ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) / ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) ) |
| 96 | 9 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 97 | mulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ∈ ℂ ) → ( 𝐴 · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ∈ ℂ ) | |
| 98 | 92 97 | mpdan | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ∈ ℂ ) |
| 99 | 98 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( 𝐴 · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ∈ ℂ ) |
| 100 | 9 92 | mulcld | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ∈ ℂ ) |
| 101 | 100 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ∈ ℂ ) |
| 102 | sqeq0 | ⊢ ( ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ∈ ℂ → ( ( ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ↑ 2 ) = 0 ↔ ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) = 0 ) ) | |
| 103 | 15 102 | syl | ⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ↑ 2 ) = 0 ↔ ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) = 0 ) ) |
| 104 | 86 | eqeq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ↑ 2 ) = 0 ↔ ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) = 0 ) ) |
| 105 | 103 104 17 | 3bitr3rd | ⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) + 𝐴 ) = 0 ↔ ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) = 0 ) ) |
| 106 | 105 | necon3bid | ⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ↔ ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ≠ 0 ) ) |
| 107 | 106 | biimpa | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ≠ 0 ) |
| 108 | 96 99 101 107 | divassd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( ( abs ‘ 𝐴 ) · ( 𝐴 · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) / ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) = ( ( abs ‘ 𝐴 ) · ( ( 𝐴 · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) / ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) ) ) |
| 109 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → 𝐴 ∈ ℂ ) | |
| 110 | 109 101 107 | divcan4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( 𝐴 · ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) / ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) = 𝐴 ) |
| 111 | 95 108 110 | 3eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( abs ‘ 𝐴 ) · ( ( 𝐴 · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) / ( ( abs ‘ 𝐴 ) · ( ( ( ∗ ‘ 𝐴 ) + ( 2 · ( abs ‘ 𝐴 ) ) ) + 𝐴 ) ) ) ) = 𝐴 ) |
| 112 | 22 90 111 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( 𝐵 ↑ 2 ) = 𝐴 ) |
| 113 | 6 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( √ ‘ ( abs ‘ 𝐴 ) ) ∈ ℝ ) |
| 114 | 11 | addcjd | ⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) = ( 2 · ( ℜ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) |
| 115 | 2re | ⊢ 2 ∈ ℝ | |
| 116 | 11 | recld | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ∈ ℝ ) |
| 117 | remulcl | ⊢ ( ( 2 ∈ ℝ ∧ ( ℜ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ∈ ℝ ) → ( 2 · ( ℜ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ∈ ℝ ) | |
| 118 | 115 116 117 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( 2 · ( ℜ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ∈ ℝ ) |
| 119 | 114 118 | eqeltrd | ⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ∈ ℝ ) |
| 120 | 119 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ∈ ℝ ) |
| 121 | 14 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ∈ ℝ ) |
| 122 | 120 121 19 | redivcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ∈ ℝ ) |
| 123 | 113 122 | remulcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ∈ ℝ ) |
| 124 | sqrtge0 | ⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) → 0 ≤ ( √ ‘ ( abs ‘ 𝐴 ) ) ) | |
| 125 | 3 4 124 | syl2anc | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( √ ‘ ( abs ‘ 𝐴 ) ) ) |
| 126 | 125 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → 0 ≤ ( √ ‘ ( abs ‘ 𝐴 ) ) ) |
| 127 | negcl | ⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) | |
| 128 | releabs | ⊢ ( - 𝐴 ∈ ℂ → ( ℜ ‘ - 𝐴 ) ≤ ( abs ‘ - 𝐴 ) ) | |
| 129 | 127 128 | syl | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ - 𝐴 ) ≤ ( abs ‘ - 𝐴 ) ) |
| 130 | abscl | ⊢ ( - 𝐴 ∈ ℂ → ( abs ‘ - 𝐴 ) ∈ ℝ ) | |
| 131 | 127 130 | syl | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ - 𝐴 ) ∈ ℝ ) |
| 132 | 127 | recld | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ - 𝐴 ) ∈ ℝ ) |
| 133 | 131 132 | subge0d | ⊢ ( 𝐴 ∈ ℂ → ( 0 ≤ ( ( abs ‘ - 𝐴 ) − ( ℜ ‘ - 𝐴 ) ) ↔ ( ℜ ‘ - 𝐴 ) ≤ ( abs ‘ - 𝐴 ) ) ) |
| 134 | 129 133 | mpbird | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( ( abs ‘ - 𝐴 ) − ( ℜ ‘ - 𝐴 ) ) ) |
| 135 | readd | ⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ℜ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) = ( ( ℜ ‘ ( abs ‘ 𝐴 ) ) + ( ℜ ‘ 𝐴 ) ) ) | |
| 136 | 9 135 | mpancom | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) = ( ( ℜ ‘ ( abs ‘ 𝐴 ) ) + ( ℜ ‘ 𝐴 ) ) ) |
| 137 | 3 | rered | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( abs ‘ 𝐴 ) ) = ( abs ‘ 𝐴 ) ) |
| 138 | absneg | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ - 𝐴 ) = ( abs ‘ 𝐴 ) ) | |
| 139 | 137 138 | eqtr4d | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( abs ‘ 𝐴 ) ) = ( abs ‘ - 𝐴 ) ) |
| 140 | negneg | ⊢ ( 𝐴 ∈ ℂ → - - 𝐴 = 𝐴 ) | |
| 141 | 140 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ - - 𝐴 ) = ( ℜ ‘ 𝐴 ) ) |
| 142 | 127 | renegd | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ - - 𝐴 ) = - ( ℜ ‘ - 𝐴 ) ) |
| 143 | 141 142 | eqtr3d | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) = - ( ℜ ‘ - 𝐴 ) ) |
| 144 | 139 143 | oveq12d | ⊢ ( 𝐴 ∈ ℂ → ( ( ℜ ‘ ( abs ‘ 𝐴 ) ) + ( ℜ ‘ 𝐴 ) ) = ( ( abs ‘ - 𝐴 ) + - ( ℜ ‘ - 𝐴 ) ) ) |
| 145 | 131 | recnd | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ - 𝐴 ) ∈ ℂ ) |
| 146 | 132 | recnd | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ - 𝐴 ) ∈ ℂ ) |
| 147 | 145 146 | negsubd | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ - 𝐴 ) + - ( ℜ ‘ - 𝐴 ) ) = ( ( abs ‘ - 𝐴 ) − ( ℜ ‘ - 𝐴 ) ) ) |
| 148 | 136 144 147 | 3eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) = ( ( abs ‘ - 𝐴 ) − ( ℜ ‘ - 𝐴 ) ) ) |
| 149 | 134 148 | breqtrrd | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( ℜ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) |
| 150 | 0le2 | ⊢ 0 ≤ 2 | |
| 151 | mulge0 | ⊢ ( ( ( 2 ∈ ℝ ∧ 0 ≤ 2 ) ∧ ( ( ℜ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( ℜ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) → 0 ≤ ( 2 · ( ℜ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) | |
| 152 | 115 150 151 | mpanl12 | ⊢ ( ( ( ℜ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( ℜ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) → 0 ≤ ( 2 · ( ℜ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) |
| 153 | 116 149 152 | syl2anc | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( 2 · ( ℜ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) |
| 154 | 153 114 | breqtrrd | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) |
| 155 | 154 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → 0 ≤ ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) |
| 156 | absge0 | ⊢ ( ( ( abs ‘ 𝐴 ) + 𝐴 ) ∈ ℂ → 0 ≤ ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) | |
| 157 | 12 156 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → 0 ≤ ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) |
| 158 | 121 157 19 | ne0gt0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → 0 < ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) |
| 159 | divge0 | ⊢ ( ( ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ∈ ℝ ∧ 0 ≤ ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ∧ ( ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ∈ ℝ ∧ 0 < ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) → 0 ≤ ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) | |
| 160 | 120 155 121 158 159 | syl22anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → 0 ≤ ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) |
| 161 | 113 122 126 160 | mulge0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → 0 ≤ ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) |
| 162 | 2pos | ⊢ 0 < 2 | |
| 163 | divge0 | ⊢ ( ( ( ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ∈ ℝ ∧ 0 ≤ ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → 0 ≤ ( ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) / 2 ) ) | |
| 164 | 115 162 163 | mpanr12 | ⊢ ( ( ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ∈ ℝ ∧ 0 ≤ ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) → 0 ≤ ( ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) / 2 ) ) |
| 165 | 123 161 164 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → 0 ≤ ( ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) / 2 ) ) |
| 166 | 8 20 | mulcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ∈ ℂ ) |
| 167 | 1 166 | eqeltrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → 𝐵 ∈ ℂ ) |
| 168 | reval | ⊢ ( 𝐵 ∈ ℂ → ( ℜ ‘ 𝐵 ) = ( ( 𝐵 + ( ∗ ‘ 𝐵 ) ) / 2 ) ) | |
| 169 | 167 168 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ℜ ‘ 𝐵 ) = ( ( 𝐵 + ( ∗ ‘ 𝐵 ) ) / 2 ) ) |
| 170 | 1 | oveq1i | ⊢ ( 𝐵 + ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) = ( ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) + ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) |
| 171 | 1 | fveq2i | ⊢ ( ∗ ‘ 𝐵 ) = ( ∗ ‘ ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) |
| 172 | 8 20 | cjmuld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) = ( ( ∗ ‘ ( √ ‘ ( abs ‘ 𝐴 ) ) ) · ( ∗ ‘ ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) ) |
| 173 | 171 172 | eqtrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ∗ ‘ 𝐵 ) = ( ( ∗ ‘ ( √ ‘ ( abs ‘ 𝐴 ) ) ) · ( ∗ ‘ ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) ) |
| 174 | 6 | cjred | ⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ ( √ ‘ ( abs ‘ 𝐴 ) ) ) = ( √ ‘ ( abs ‘ 𝐴 ) ) ) |
| 175 | 174 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( √ ‘ ( abs ‘ 𝐴 ) ) ) = ( √ ‘ ( abs ‘ 𝐴 ) ) ) |
| 176 | 12 16 19 | cjdivd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) = ( ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) / ( ∗ ‘ ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) |
| 177 | 121 | cjred | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) = ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) |
| 178 | 177 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) / ( ∗ ‘ ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) = ( ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) |
| 179 | 176 178 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) = ( ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) |
| 180 | 175 179 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( ∗ ‘ ( √ ‘ ( abs ‘ 𝐴 ) ) ) · ( ∗ ‘ ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) = ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) |
| 181 | 173 180 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ∗ ‘ 𝐵 ) = ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) |
| 182 | 181 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( 𝐵 + ( ∗ ‘ 𝐵 ) ) = ( 𝐵 + ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) ) |
| 183 | 12 | cjcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ∈ ℂ ) |
| 184 | 183 16 19 | divcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ∈ ℂ ) |
| 185 | 8 20 184 | adddid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) + ( ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) = ( ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) + ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) ) |
| 186 | 170 182 185 | 3eqtr4a | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( 𝐵 + ( ∗ ‘ 𝐵 ) ) = ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) + ( ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) ) |
| 187 | 12 183 16 19 | divdird | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) = ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) + ( ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) |
| 188 | 187 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) = ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) + ( ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) ) |
| 189 | 186 188 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( 𝐵 + ( ∗ ‘ 𝐵 ) ) = ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) |
| 190 | 189 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( 𝐵 + ( ∗ ‘ 𝐵 ) ) / 2 ) = ( ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) / 2 ) ) |
| 191 | 169 190 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ℜ ‘ 𝐵 ) = ( ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( ( abs ‘ 𝐴 ) + 𝐴 ) + ( ∗ ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) / 2 ) ) |
| 192 | 165 191 | breqtrrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → 0 ≤ ( ℜ ‘ 𝐵 ) ) |
| 193 | subneg | ⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( abs ‘ 𝐴 ) − - 𝐴 ) = ( ( abs ‘ 𝐴 ) + 𝐴 ) ) | |
| 194 | 9 193 | mpancom | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) − - 𝐴 ) = ( ( abs ‘ 𝐴 ) + 𝐴 ) ) |
| 195 | 194 | eqeq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) − - 𝐴 ) = 0 ↔ ( ( abs ‘ 𝐴 ) + 𝐴 ) = 0 ) ) |
| 196 | 9 127 | subeq0ad | ⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) − - 𝐴 ) = 0 ↔ ( abs ‘ 𝐴 ) = - 𝐴 ) ) |
| 197 | 195 196 | bitr3d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) + 𝐴 ) = 0 ↔ ( abs ‘ 𝐴 ) = - 𝐴 ) ) |
| 198 | 197 | necon3bid | ⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ↔ ( abs ‘ 𝐴 ) ≠ - 𝐴 ) ) |
| 199 | 198 | biimpa | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( abs ‘ 𝐴 ) ≠ - 𝐴 ) |
| 200 | resqcl | ⊢ ( ( i · 𝐵 ) ∈ ℝ → ( ( i · 𝐵 ) ↑ 2 ) ∈ ℝ ) | |
| 201 | ax-icn | ⊢ i ∈ ℂ | |
| 202 | sqmul | ⊢ ( ( i ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( i · 𝐵 ) ↑ 2 ) = ( ( i ↑ 2 ) · ( 𝐵 ↑ 2 ) ) ) | |
| 203 | 201 167 202 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( i · 𝐵 ) ↑ 2 ) = ( ( i ↑ 2 ) · ( 𝐵 ↑ 2 ) ) ) |
| 204 | i2 | ⊢ ( i ↑ 2 ) = - 1 | |
| 205 | 204 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( i ↑ 2 ) = - 1 ) |
| 206 | 205 112 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( i ↑ 2 ) · ( 𝐵 ↑ 2 ) ) = ( - 1 · 𝐴 ) ) |
| 207 | mulm1 | ⊢ ( 𝐴 ∈ ℂ → ( - 1 · 𝐴 ) = - 𝐴 ) | |
| 208 | 207 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( - 1 · 𝐴 ) = - 𝐴 ) |
| 209 | 203 206 208 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( i · 𝐵 ) ↑ 2 ) = - 𝐴 ) |
| 210 | 209 | eleq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( ( i · 𝐵 ) ↑ 2 ) ∈ ℝ ↔ - 𝐴 ∈ ℝ ) ) |
| 211 | 200 210 | imbitrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( i · 𝐵 ) ∈ ℝ → - 𝐴 ∈ ℝ ) ) |
| 212 | renegcl | ⊢ ( - 𝐴 ∈ ℝ → - - 𝐴 ∈ ℝ ) | |
| 213 | 140 | eleq1d | ⊢ ( 𝐴 ∈ ℂ → ( - - 𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ ) ) |
| 214 | 212 213 | imbitrid | ⊢ ( 𝐴 ∈ ℂ → ( - 𝐴 ∈ ℝ → 𝐴 ∈ ℝ ) ) |
| 215 | 109 211 214 | sylsyld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( i · 𝐵 ) ∈ ℝ → 𝐴 ∈ ℝ ) ) |
| 216 | sqge0 | ⊢ ( ( i · 𝐵 ) ∈ ℝ → 0 ≤ ( ( i · 𝐵 ) ↑ 2 ) ) | |
| 217 | 209 | breq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( 0 ≤ ( ( i · 𝐵 ) ↑ 2 ) ↔ 0 ≤ - 𝐴 ) ) |
| 218 | 216 217 | imbitrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( i · 𝐵 ) ∈ ℝ → 0 ≤ - 𝐴 ) ) |
| 219 | le0neg1 | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ≤ 0 ↔ 0 ≤ - 𝐴 ) ) | |
| 220 | 219 | biimprcd | ⊢ ( 0 ≤ - 𝐴 → ( 𝐴 ∈ ℝ → 𝐴 ≤ 0 ) ) |
| 221 | 218 215 220 | syl6c | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( i · 𝐵 ) ∈ ℝ → 𝐴 ≤ 0 ) ) |
| 222 | 215 221 | jcad | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( i · 𝐵 ) ∈ ℝ → ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) ) ) |
| 223 | absnid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → ( abs ‘ 𝐴 ) = - 𝐴 ) | |
| 224 | 222 223 | syl6 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( i · 𝐵 ) ∈ ℝ → ( abs ‘ 𝐴 ) = - 𝐴 ) ) |
| 225 | 224 | necon3ad | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( abs ‘ 𝐴 ) ≠ - 𝐴 → ¬ ( i · 𝐵 ) ∈ ℝ ) ) |
| 226 | 199 225 | mpd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ¬ ( i · 𝐵 ) ∈ ℝ ) |
| 227 | rpre | ⊢ ( ( i · 𝐵 ) ∈ ℝ+ → ( i · 𝐵 ) ∈ ℝ ) | |
| 228 | 226 227 | nsyl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ¬ ( i · 𝐵 ) ∈ ℝ+ ) |
| 229 | df-nel | ⊢ ( ( i · 𝐵 ) ∉ ℝ+ ↔ ¬ ( i · 𝐵 ) ∈ ℝ+ ) | |
| 230 | 228 229 | sylibr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( i · 𝐵 ) ∉ ℝ+ ) |
| 231 | 112 192 230 | 3jca | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( 𝐵 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ∧ ( i · 𝐵 ) ∉ ℝ+ ) ) |