This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The square of a binomial. (Contributed by FL, 10-Dec-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | binom2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) ↑ 2 ) = ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) + ( 𝐵 ↑ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( 𝐴 + 𝐵 ) = ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) + 𝐵 ) ) | |
| 2 | 1 | oveq1d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( ( 𝐴 + 𝐵 ) ↑ 2 ) = ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) + 𝐵 ) ↑ 2 ) ) |
| 3 | oveq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( 𝐴 ↑ 2 ) = ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) ) | |
| 4 | oveq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( 𝐴 · 𝐵 ) = ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · 𝐵 ) ) | |
| 5 | 4 | oveq2d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( 2 · ( 𝐴 · 𝐵 ) ) = ( 2 · ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · 𝐵 ) ) ) |
| 6 | 3 5 | oveq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) = ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) + ( 2 · ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · 𝐵 ) ) ) ) |
| 7 | 6 | oveq1d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) + ( 𝐵 ↑ 2 ) ) = ( ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) + ( 2 · ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · 𝐵 ) ) ) + ( 𝐵 ↑ 2 ) ) ) |
| 8 | 2 7 | eqeq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( ( ( 𝐴 + 𝐵 ) ↑ 2 ) = ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) + ( 𝐵 ↑ 2 ) ) ↔ ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) + 𝐵 ) ↑ 2 ) = ( ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) + ( 2 · ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · 𝐵 ) ) ) + ( 𝐵 ↑ 2 ) ) ) ) |
| 9 | oveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) + 𝐵 ) = ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) + if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) | |
| 10 | 9 | oveq1d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) + 𝐵 ) ↑ 2 ) = ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) + if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ↑ 2 ) ) |
| 11 | oveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · 𝐵 ) = ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) | |
| 12 | 11 | oveq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( 2 · ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · 𝐵 ) ) = ( 2 · ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) ) |
| 13 | 12 | oveq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) + ( 2 · ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · 𝐵 ) ) ) = ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) + ( 2 · ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) ) ) |
| 14 | oveq1 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( 𝐵 ↑ 2 ) = ( if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ↑ 2 ) ) | |
| 15 | 13 14 | oveq12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) + ( 2 · ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · 𝐵 ) ) ) + ( 𝐵 ↑ 2 ) ) = ( ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) + ( 2 · ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) ) + ( if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ↑ 2 ) ) ) |
| 16 | 10 15 | eqeq12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) + 𝐵 ) ↑ 2 ) = ( ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) + ( 2 · ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · 𝐵 ) ) ) + ( 𝐵 ↑ 2 ) ) ↔ ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) + if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ↑ 2 ) = ( ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) + ( 2 · ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) ) + ( if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ↑ 2 ) ) ) ) |
| 17 | 0cn | ⊢ 0 ∈ ℂ | |
| 18 | 17 | elimel | ⊢ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ∈ ℂ |
| 19 | 17 | elimel | ⊢ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ∈ ℂ |
| 20 | 18 19 | binom2i | ⊢ ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) + if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ↑ 2 ) = ( ( ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ↑ 2 ) + ( 2 · ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) ) + ( if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ↑ 2 ) ) |
| 21 | 8 16 20 | dedth2h | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) ↑ 2 ) = ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) + ( 𝐵 ↑ 2 ) ) ) |