This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the square root function. (Contributed by Mario Carneiro, 9-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resqrtcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( √ ‘ 𝐴 ) ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resqrex | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ∃ 𝑦 ∈ ℝ ( 0 ≤ 𝑦 ∧ ( 𝑦 ↑ 2 ) = 𝐴 ) ) | |
| 2 | simp1l | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝑦 ∈ ℝ ∧ ( 0 ≤ 𝑦 ∧ ( 𝑦 ↑ 2 ) = 𝐴 ) ) → 𝐴 ∈ ℝ ) | |
| 3 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 4 | sqrtval | ⊢ ( 𝐴 ∈ ℂ → ( √ ‘ 𝐴 ) = ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ) | |
| 5 | 2 3 4 | 3syl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝑦 ∈ ℝ ∧ ( 0 ≤ 𝑦 ∧ ( 𝑦 ↑ 2 ) = 𝐴 ) ) → ( √ ‘ 𝐴 ) = ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ) |
| 6 | simp3r | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝑦 ∈ ℝ ∧ ( 0 ≤ 𝑦 ∧ ( 𝑦 ↑ 2 ) = 𝐴 ) ) → ( 𝑦 ↑ 2 ) = 𝐴 ) | |
| 7 | simp3l | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝑦 ∈ ℝ ∧ ( 0 ≤ 𝑦 ∧ ( 𝑦 ↑ 2 ) = 𝐴 ) ) → 0 ≤ 𝑦 ) | |
| 8 | rere | ⊢ ( 𝑦 ∈ ℝ → ( ℜ ‘ 𝑦 ) = 𝑦 ) | |
| 9 | 8 | 3ad2ant2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝑦 ∈ ℝ ∧ ( 0 ≤ 𝑦 ∧ ( 𝑦 ↑ 2 ) = 𝐴 ) ) → ( ℜ ‘ 𝑦 ) = 𝑦 ) |
| 10 | 7 9 | breqtrrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝑦 ∈ ℝ ∧ ( 0 ≤ 𝑦 ∧ ( 𝑦 ↑ 2 ) = 𝐴 ) ) → 0 ≤ ( ℜ ‘ 𝑦 ) ) |
| 11 | rennim | ⊢ ( 𝑦 ∈ ℝ → ( i · 𝑦 ) ∉ ℝ+ ) | |
| 12 | 11 | 3ad2ant2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝑦 ∈ ℝ ∧ ( 0 ≤ 𝑦 ∧ ( 𝑦 ↑ 2 ) = 𝐴 ) ) → ( i · 𝑦 ) ∉ ℝ+ ) |
| 13 | 6 10 12 | 3jca | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝑦 ∈ ℝ ∧ ( 0 ≤ 𝑦 ∧ ( 𝑦 ↑ 2 ) = 𝐴 ) ) → ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) |
| 14 | recn | ⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℂ ) | |
| 15 | 14 | 3ad2ant2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝑦 ∈ ℝ ∧ ( 0 ≤ 𝑦 ∧ ( 𝑦 ↑ 2 ) = 𝐴 ) ) → 𝑦 ∈ ℂ ) |
| 16 | resqreu | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ∃! 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) | |
| 17 | 16 | 3ad2ant1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝑦 ∈ ℝ ∧ ( 0 ≤ 𝑦 ∧ ( 𝑦 ↑ 2 ) = 𝐴 ) ) → ∃! 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) |
| 18 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ↑ 2 ) = ( 𝑦 ↑ 2 ) ) | |
| 19 | 18 | eqeq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ↑ 2 ) = 𝐴 ↔ ( 𝑦 ↑ 2 ) = 𝐴 ) ) |
| 20 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( ℜ ‘ 𝑥 ) = ( ℜ ‘ 𝑦 ) ) | |
| 21 | 20 | breq2d | ⊢ ( 𝑥 = 𝑦 → ( 0 ≤ ( ℜ ‘ 𝑥 ) ↔ 0 ≤ ( ℜ ‘ 𝑦 ) ) ) |
| 22 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( i · 𝑥 ) = ( i · 𝑦 ) ) | |
| 23 | neleq1 | ⊢ ( ( i · 𝑥 ) = ( i · 𝑦 ) → ( ( i · 𝑥 ) ∉ ℝ+ ↔ ( i · 𝑦 ) ∉ ℝ+ ) ) | |
| 24 | 22 23 | syl | ⊢ ( 𝑥 = 𝑦 → ( ( i · 𝑥 ) ∉ ℝ+ ↔ ( i · 𝑦 ) ∉ ℝ+ ) ) |
| 25 | 19 21 24 | 3anbi123d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ↔ ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ) ) |
| 26 | 25 | riota2 | ⊢ ( ( 𝑦 ∈ ℂ ∧ ∃! 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) → ( ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ↔ ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) = 𝑦 ) ) |
| 27 | 15 17 26 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝑦 ∈ ℝ ∧ ( 0 ≤ 𝑦 ∧ ( 𝑦 ↑ 2 ) = 𝐴 ) ) → ( ( ( 𝑦 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑦 ) ∧ ( i · 𝑦 ) ∉ ℝ+ ) ↔ ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) = 𝑦 ) ) |
| 28 | 13 27 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝑦 ∈ ℝ ∧ ( 0 ≤ 𝑦 ∧ ( 𝑦 ↑ 2 ) = 𝐴 ) ) → ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) = 𝑦 ) |
| 29 | 5 28 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝑦 ∈ ℝ ∧ ( 0 ≤ 𝑦 ∧ ( 𝑦 ↑ 2 ) = 𝐴 ) ) → ( √ ‘ 𝐴 ) = 𝑦 ) |
| 30 | simp2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝑦 ∈ ℝ ∧ ( 0 ≤ 𝑦 ∧ ( 𝑦 ↑ 2 ) = 𝐴 ) ) → 𝑦 ∈ ℝ ) | |
| 31 | 29 30 | eqeltrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝑦 ∈ ℝ ∧ ( 0 ≤ 𝑦 ∧ ( 𝑦 ↑ 2 ) = 𝐴 ) ) → ( √ ‘ 𝐴 ) ∈ ℝ ) |
| 32 | 31 | rexlimdv3a | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ∃ 𝑦 ∈ ℝ ( 0 ≤ 𝑦 ∧ ( 𝑦 ↑ 2 ) = 𝐴 ) → ( √ ‘ 𝐴 ) ∈ ℝ ) ) |
| 33 | 1 32 | mpd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( √ ‘ 𝐴 ) ∈ ℝ ) |