This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absolute value of the negative. (Contributed by NM, 27-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absneg | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ - 𝐴 ) = ( abs ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cjneg | ⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ - 𝐴 ) = - ( ∗ ‘ 𝐴 ) ) | |
| 2 | 1 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( - 𝐴 · ( ∗ ‘ - 𝐴 ) ) = ( - 𝐴 · - ( ∗ ‘ 𝐴 ) ) ) |
| 3 | cjcl | ⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) ∈ ℂ ) | |
| 4 | mul2neg | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ∗ ‘ 𝐴 ) ∈ ℂ ) → ( - 𝐴 · - ( ∗ ‘ 𝐴 ) ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) | |
| 5 | 3 4 | mpdan | ⊢ ( 𝐴 ∈ ℂ → ( - 𝐴 · - ( ∗ ‘ 𝐴 ) ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) |
| 6 | 2 5 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( - 𝐴 · ( ∗ ‘ - 𝐴 ) ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) |
| 7 | 6 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( - 𝐴 · ( ∗ ‘ - 𝐴 ) ) ) = ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ) |
| 8 | negcl | ⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) | |
| 9 | absval | ⊢ ( - 𝐴 ∈ ℂ → ( abs ‘ - 𝐴 ) = ( √ ‘ ( - 𝐴 · ( ∗ ‘ - 𝐴 ) ) ) ) | |
| 10 | 8 9 | syl | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ - 𝐴 ) = ( √ ‘ ( - 𝐴 · ( ∗ ‘ - 𝐴 ) ) ) ) |
| 11 | absval | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) = ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ) | |
| 12 | 7 10 11 | 3eqtr4d | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ - 𝐴 ) = ( abs ‘ 𝐴 ) ) |