This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Square of value of absolute value function. (Contributed by NM, 16-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absvalsq | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | absval | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) = ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ) | |
| 2 | 1 | oveq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ↑ 2 ) ) |
| 3 | cjmulrcl | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℝ ) | |
| 4 | cjmulge0 | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) | |
| 5 | resqrtth | ⊢ ( ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) → ( ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ↑ 2 ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) | |
| 6 | 3 4 5 | syl2anc | ⊢ ( 𝐴 ∈ ℂ → ( ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ↑ 2 ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) |
| 7 | 2 6 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) |