This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for sqreu : write a general complex square root in terms of the square root function over nonnegative reals. (Contributed by Mario Carneiro, 9-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sqrteulem.1 | |- B = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) |
|
| Assertion | sqreulem | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( B ^ 2 ) = A /\ 0 <_ ( Re ` B ) /\ ( _i x. B ) e/ RR+ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqrteulem.1 | |- B = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) |
|
| 2 | 1 | oveq1i | |- ( B ^ 2 ) = ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ^ 2 ) |
| 3 | abscl | |- ( A e. CC -> ( abs ` A ) e. RR ) |
|
| 4 | absge0 | |- ( A e. CC -> 0 <_ ( abs ` A ) ) |
|
| 5 | resqrtcl | |- ( ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) -> ( sqrt ` ( abs ` A ) ) e. RR ) |
|
| 6 | 3 4 5 | syl2anc | |- ( A e. CC -> ( sqrt ` ( abs ` A ) ) e. RR ) |
| 7 | 6 | recnd | |- ( A e. CC -> ( sqrt ` ( abs ` A ) ) e. CC ) |
| 8 | 7 | adantr | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( sqrt ` ( abs ` A ) ) e. CC ) |
| 9 | 3 | recnd | |- ( A e. CC -> ( abs ` A ) e. CC ) |
| 10 | addcl | |- ( ( ( abs ` A ) e. CC /\ A e. CC ) -> ( ( abs ` A ) + A ) e. CC ) |
|
| 11 | 9 10 | mpancom | |- ( A e. CC -> ( ( abs ` A ) + A ) e. CC ) |
| 12 | 11 | adantr | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( abs ` A ) + A ) e. CC ) |
| 13 | abscl | |- ( ( ( abs ` A ) + A ) e. CC -> ( abs ` ( ( abs ` A ) + A ) ) e. RR ) |
|
| 14 | 11 13 | syl | |- ( A e. CC -> ( abs ` ( ( abs ` A ) + A ) ) e. RR ) |
| 15 | 14 | recnd | |- ( A e. CC -> ( abs ` ( ( abs ` A ) + A ) ) e. CC ) |
| 16 | 15 | adantr | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( abs ` ( ( abs ` A ) + A ) ) e. CC ) |
| 17 | 11 | abs00ad | |- ( A e. CC -> ( ( abs ` ( ( abs ` A ) + A ) ) = 0 <-> ( ( abs ` A ) + A ) = 0 ) ) |
| 18 | 17 | necon3bid | |- ( A e. CC -> ( ( abs ` ( ( abs ` A ) + A ) ) =/= 0 <-> ( ( abs ` A ) + A ) =/= 0 ) ) |
| 19 | 18 | biimpar | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( abs ` ( ( abs ` A ) + A ) ) =/= 0 ) |
| 20 | 12 16 19 | divcld | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) e. CC ) |
| 21 | 8 20 | sqmuld | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ^ 2 ) = ( ( ( sqrt ` ( abs ` A ) ) ^ 2 ) x. ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ^ 2 ) ) ) |
| 22 | 2 21 | eqtrid | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( B ^ 2 ) = ( ( ( sqrt ` ( abs ` A ) ) ^ 2 ) x. ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ^ 2 ) ) ) |
| 23 | 3 | adantr | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( abs ` A ) e. RR ) |
| 24 | 4 | adantr | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 <_ ( abs ` A ) ) |
| 25 | resqrtth | |- ( ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) -> ( ( sqrt ` ( abs ` A ) ) ^ 2 ) = ( abs ` A ) ) |
|
| 26 | 23 24 25 | syl2anc | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( sqrt ` ( abs ` A ) ) ^ 2 ) = ( abs ` A ) ) |
| 27 | 12 16 19 | sqdivd | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ^ 2 ) = ( ( ( ( abs ` A ) + A ) ^ 2 ) / ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) ) ) |
| 28 | absvalsq | |- ( A e. CC -> ( ( abs ` A ) ^ 2 ) = ( A x. ( * ` A ) ) ) |
|
| 29 | 2cn | |- 2 e. CC |
|
| 30 | mulass | |- ( ( 2 e. CC /\ ( abs ` A ) e. CC /\ A e. CC ) -> ( ( 2 x. ( abs ` A ) ) x. A ) = ( 2 x. ( ( abs ` A ) x. A ) ) ) |
|
| 31 | 29 30 | mp3an1 | |- ( ( ( abs ` A ) e. CC /\ A e. CC ) -> ( ( 2 x. ( abs ` A ) ) x. A ) = ( 2 x. ( ( abs ` A ) x. A ) ) ) |
| 32 | 9 31 | mpancom | |- ( A e. CC -> ( ( 2 x. ( abs ` A ) ) x. A ) = ( 2 x. ( ( abs ` A ) x. A ) ) ) |
| 33 | mulcl | |- ( ( 2 e. CC /\ ( abs ` A ) e. CC ) -> ( 2 x. ( abs ` A ) ) e. CC ) |
|
| 34 | 29 9 33 | sylancr | |- ( A e. CC -> ( 2 x. ( abs ` A ) ) e. CC ) |
| 35 | mulcom | |- ( ( ( 2 x. ( abs ` A ) ) e. CC /\ A e. CC ) -> ( ( 2 x. ( abs ` A ) ) x. A ) = ( A x. ( 2 x. ( abs ` A ) ) ) ) |
|
| 36 | 34 35 | mpancom | |- ( A e. CC -> ( ( 2 x. ( abs ` A ) ) x. A ) = ( A x. ( 2 x. ( abs ` A ) ) ) ) |
| 37 | 32 36 | eqtr3d | |- ( A e. CC -> ( 2 x. ( ( abs ` A ) x. A ) ) = ( A x. ( 2 x. ( abs ` A ) ) ) ) |
| 38 | 28 37 | oveq12d | |- ( A e. CC -> ( ( ( abs ` A ) ^ 2 ) + ( 2 x. ( ( abs ` A ) x. A ) ) ) = ( ( A x. ( * ` A ) ) + ( A x. ( 2 x. ( abs ` A ) ) ) ) ) |
| 39 | cjcl | |- ( A e. CC -> ( * ` A ) e. CC ) |
|
| 40 | adddi | |- ( ( A e. CC /\ ( * ` A ) e. CC /\ ( 2 x. ( abs ` A ) ) e. CC ) -> ( A x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) = ( ( A x. ( * ` A ) ) + ( A x. ( 2 x. ( abs ` A ) ) ) ) ) |
|
| 41 | 39 34 40 | mpd3an23 | |- ( A e. CC -> ( A x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) = ( ( A x. ( * ` A ) ) + ( A x. ( 2 x. ( abs ` A ) ) ) ) ) |
| 42 | 38 41 | eqtr4d | |- ( A e. CC -> ( ( ( abs ` A ) ^ 2 ) + ( 2 x. ( ( abs ` A ) x. A ) ) ) = ( A x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) ) |
| 43 | sqval | |- ( A e. CC -> ( A ^ 2 ) = ( A x. A ) ) |
|
| 44 | 42 43 | oveq12d | |- ( A e. CC -> ( ( ( ( abs ` A ) ^ 2 ) + ( 2 x. ( ( abs ` A ) x. A ) ) ) + ( A ^ 2 ) ) = ( ( A x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) + ( A x. A ) ) ) |
| 45 | binom2 | |- ( ( ( abs ` A ) e. CC /\ A e. CC ) -> ( ( ( abs ` A ) + A ) ^ 2 ) = ( ( ( ( abs ` A ) ^ 2 ) + ( 2 x. ( ( abs ` A ) x. A ) ) ) + ( A ^ 2 ) ) ) |
|
| 46 | 9 45 | mpancom | |- ( A e. CC -> ( ( ( abs ` A ) + A ) ^ 2 ) = ( ( ( ( abs ` A ) ^ 2 ) + ( 2 x. ( ( abs ` A ) x. A ) ) ) + ( A ^ 2 ) ) ) |
| 47 | id | |- ( A e. CC -> A e. CC ) |
|
| 48 | 39 34 | addcld | |- ( A e. CC -> ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) e. CC ) |
| 49 | 47 48 47 | adddid | |- ( A e. CC -> ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) = ( ( A x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) + ( A x. A ) ) ) |
| 50 | 44 46 49 | 3eqtr4d | |- ( A e. CC -> ( ( ( abs ` A ) + A ) ^ 2 ) = ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) |
| 51 | 9 34 | mulcld | |- ( A e. CC -> ( ( abs ` A ) x. ( 2 x. ( abs ` A ) ) ) e. CC ) |
| 52 | 9 39 | mulcld | |- ( A e. CC -> ( ( abs ` A ) x. ( * ` A ) ) e. CC ) |
| 53 | 51 52 | addcomd | |- ( A e. CC -> ( ( ( abs ` A ) x. ( 2 x. ( abs ` A ) ) ) + ( ( abs ` A ) x. ( * ` A ) ) ) = ( ( ( abs ` A ) x. ( * ` A ) ) + ( ( abs ` A ) x. ( 2 x. ( abs ` A ) ) ) ) ) |
| 54 | 9 9 | mulcld | |- ( A e. CC -> ( ( abs ` A ) x. ( abs ` A ) ) e. CC ) |
| 55 | 54 | 2timesd | |- ( A e. CC -> ( 2 x. ( ( abs ` A ) x. ( abs ` A ) ) ) = ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( abs ` A ) x. ( abs ` A ) ) ) ) |
| 56 | mul12 | |- ( ( 2 e. CC /\ ( abs ` A ) e. CC /\ ( abs ` A ) e. CC ) -> ( 2 x. ( ( abs ` A ) x. ( abs ` A ) ) ) = ( ( abs ` A ) x. ( 2 x. ( abs ` A ) ) ) ) |
|
| 57 | 29 9 9 56 | mp3an2i | |- ( A e. CC -> ( 2 x. ( ( abs ` A ) x. ( abs ` A ) ) ) = ( ( abs ` A ) x. ( 2 x. ( abs ` A ) ) ) ) |
| 58 | 9 | sqvald | |- ( A e. CC -> ( ( abs ` A ) ^ 2 ) = ( ( abs ` A ) x. ( abs ` A ) ) ) |
| 59 | mulcom | |- ( ( A e. CC /\ ( * ` A ) e. CC ) -> ( A x. ( * ` A ) ) = ( ( * ` A ) x. A ) ) |
|
| 60 | 39 59 | mpdan | |- ( A e. CC -> ( A x. ( * ` A ) ) = ( ( * ` A ) x. A ) ) |
| 61 | 28 58 60 | 3eqtr3d | |- ( A e. CC -> ( ( abs ` A ) x. ( abs ` A ) ) = ( ( * ` A ) x. A ) ) |
| 62 | 61 | oveq2d | |- ( A e. CC -> ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( abs ` A ) x. ( abs ` A ) ) ) = ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) ) |
| 63 | 55 57 62 | 3eqtr3rd | |- ( A e. CC -> ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) = ( ( abs ` A ) x. ( 2 x. ( abs ` A ) ) ) ) |
| 64 | 63 | oveq1d | |- ( A e. CC -> ( ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) + ( ( abs ` A ) x. ( * ` A ) ) ) = ( ( ( abs ` A ) x. ( 2 x. ( abs ` A ) ) ) + ( ( abs ` A ) x. ( * ` A ) ) ) ) |
| 65 | 9 39 34 | adddid | |- ( A e. CC -> ( ( abs ` A ) x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) = ( ( ( abs ` A ) x. ( * ` A ) ) + ( ( abs ` A ) x. ( 2 x. ( abs ` A ) ) ) ) ) |
| 66 | 53 64 65 | 3eqtr4d | |- ( A e. CC -> ( ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) + ( ( abs ` A ) x. ( * ` A ) ) ) = ( ( abs ` A ) x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) ) |
| 67 | 66 | oveq1d | |- ( A e. CC -> ( ( ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) + ( ( abs ` A ) x. ( * ` A ) ) ) + ( ( abs ` A ) x. A ) ) = ( ( ( abs ` A ) x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) + ( ( abs ` A ) x. A ) ) ) |
| 68 | cjadd | |- ( ( ( abs ` A ) e. CC /\ A e. CC ) -> ( * ` ( ( abs ` A ) + A ) ) = ( ( * ` ( abs ` A ) ) + ( * ` A ) ) ) |
|
| 69 | 9 68 | mpancom | |- ( A e. CC -> ( * ` ( ( abs ` A ) + A ) ) = ( ( * ` ( abs ` A ) ) + ( * ` A ) ) ) |
| 70 | 3 | cjred | |- ( A e. CC -> ( * ` ( abs ` A ) ) = ( abs ` A ) ) |
| 71 | 70 | oveq1d | |- ( A e. CC -> ( ( * ` ( abs ` A ) ) + ( * ` A ) ) = ( ( abs ` A ) + ( * ` A ) ) ) |
| 72 | 69 71 | eqtrd | |- ( A e. CC -> ( * ` ( ( abs ` A ) + A ) ) = ( ( abs ` A ) + ( * ` A ) ) ) |
| 73 | 72 | oveq2d | |- ( A e. CC -> ( ( ( abs ` A ) + A ) x. ( * ` ( ( abs ` A ) + A ) ) ) = ( ( ( abs ` A ) + A ) x. ( ( abs ` A ) + ( * ` A ) ) ) ) |
| 74 | 9 47 9 39 | muladdd | |- ( A e. CC -> ( ( ( abs ` A ) + A ) x. ( ( abs ` A ) + ( * ` A ) ) ) = ( ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) + ( ( ( abs ` A ) x. ( * ` A ) ) + ( ( abs ` A ) x. A ) ) ) ) |
| 75 | 73 74 | eqtrd | |- ( A e. CC -> ( ( ( abs ` A ) + A ) x. ( * ` ( ( abs ` A ) + A ) ) ) = ( ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) + ( ( ( abs ` A ) x. ( * ` A ) ) + ( ( abs ` A ) x. A ) ) ) ) |
| 76 | absvalsq | |- ( ( ( abs ` A ) + A ) e. CC -> ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) = ( ( ( abs ` A ) + A ) x. ( * ` ( ( abs ` A ) + A ) ) ) ) |
|
| 77 | 11 76 | syl | |- ( A e. CC -> ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) = ( ( ( abs ` A ) + A ) x. ( * ` ( ( abs ` A ) + A ) ) ) ) |
| 78 | mulcl | |- ( ( ( * ` A ) e. CC /\ A e. CC ) -> ( ( * ` A ) x. A ) e. CC ) |
|
| 79 | 39 78 | mpancom | |- ( A e. CC -> ( ( * ` A ) x. A ) e. CC ) |
| 80 | 54 79 | addcld | |- ( A e. CC -> ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) e. CC ) |
| 81 | mulcl | |- ( ( ( abs ` A ) e. CC /\ A e. CC ) -> ( ( abs ` A ) x. A ) e. CC ) |
|
| 82 | 9 81 | mpancom | |- ( A e. CC -> ( ( abs ` A ) x. A ) e. CC ) |
| 83 | 80 52 82 | addassd | |- ( A e. CC -> ( ( ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) + ( ( abs ` A ) x. ( * ` A ) ) ) + ( ( abs ` A ) x. A ) ) = ( ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) + ( ( ( abs ` A ) x. ( * ` A ) ) + ( ( abs ` A ) x. A ) ) ) ) |
| 84 | 75 77 83 | 3eqtr4d | |- ( A e. CC -> ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) = ( ( ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) + ( ( abs ` A ) x. ( * ` A ) ) ) + ( ( abs ` A ) x. A ) ) ) |
| 85 | 9 48 47 | adddid | |- ( A e. CC -> ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) = ( ( ( abs ` A ) x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) + ( ( abs ` A ) x. A ) ) ) |
| 86 | 67 84 85 | 3eqtr4d | |- ( A e. CC -> ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) = ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) |
| 87 | 50 86 | oveq12d | |- ( A e. CC -> ( ( ( ( abs ` A ) + A ) ^ 2 ) / ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) ) = ( ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) ) |
| 88 | 87 | adantr | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( ( abs ` A ) + A ) ^ 2 ) / ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) ) = ( ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) ) |
| 89 | 27 88 | eqtrd | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ^ 2 ) = ( ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) ) |
| 90 | 26 89 | oveq12d | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( sqrt ` ( abs ` A ) ) ^ 2 ) x. ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ^ 2 ) ) = ( ( abs ` A ) x. ( ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) ) ) |
| 91 | addcl | |- ( ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) e. CC /\ A e. CC ) -> ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) e. CC ) |
|
| 92 | 48 91 | mpancom | |- ( A e. CC -> ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) e. CC ) |
| 93 | 9 47 92 | mul12d | |- ( A e. CC -> ( ( abs ` A ) x. ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) = ( A x. ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) ) |
| 94 | 93 | oveq1d | |- ( A e. CC -> ( ( ( abs ` A ) x. ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) = ( ( A x. ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) ) |
| 95 | 94 | adantr | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( abs ` A ) x. ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) = ( ( A x. ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) ) |
| 96 | 9 | adantr | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( abs ` A ) e. CC ) |
| 97 | mulcl | |- ( ( A e. CC /\ ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) e. CC ) -> ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) e. CC ) |
|
| 98 | 92 97 | mpdan | |- ( A e. CC -> ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) e. CC ) |
| 99 | 98 | adantr | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) e. CC ) |
| 100 | 9 92 | mulcld | |- ( A e. CC -> ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) e. CC ) |
| 101 | 100 | adantr | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) e. CC ) |
| 102 | sqeq0 | |- ( ( abs ` ( ( abs ` A ) + A ) ) e. CC -> ( ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) = 0 <-> ( abs ` ( ( abs ` A ) + A ) ) = 0 ) ) |
|
| 103 | 15 102 | syl | |- ( A e. CC -> ( ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) = 0 <-> ( abs ` ( ( abs ` A ) + A ) ) = 0 ) ) |
| 104 | 86 | eqeq1d | |- ( A e. CC -> ( ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) = 0 <-> ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) = 0 ) ) |
| 105 | 103 104 17 | 3bitr3rd | |- ( A e. CC -> ( ( ( abs ` A ) + A ) = 0 <-> ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) = 0 ) ) |
| 106 | 105 | necon3bid | |- ( A e. CC -> ( ( ( abs ` A ) + A ) =/= 0 <-> ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) =/= 0 ) ) |
| 107 | 106 | biimpa | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) =/= 0 ) |
| 108 | 96 99 101 107 | divassd | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( abs ` A ) x. ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) = ( ( abs ` A ) x. ( ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) ) ) |
| 109 | simpl | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> A e. CC ) |
|
| 110 | 109 101 107 | divcan4d | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( A x. ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) = A ) |
| 111 | 95 108 110 | 3eqtr3d | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( abs ` A ) x. ( ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) ) = A ) |
| 112 | 22 90 111 | 3eqtrd | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( B ^ 2 ) = A ) |
| 113 | 6 | adantr | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( sqrt ` ( abs ` A ) ) e. RR ) |
| 114 | 11 | addcjd | |- ( A e. CC -> ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) = ( 2 x. ( Re ` ( ( abs ` A ) + A ) ) ) ) |
| 115 | 2re | |- 2 e. RR |
|
| 116 | 11 | recld | |- ( A e. CC -> ( Re ` ( ( abs ` A ) + A ) ) e. RR ) |
| 117 | remulcl | |- ( ( 2 e. RR /\ ( Re ` ( ( abs ` A ) + A ) ) e. RR ) -> ( 2 x. ( Re ` ( ( abs ` A ) + A ) ) ) e. RR ) |
|
| 118 | 115 116 117 | sylancr | |- ( A e. CC -> ( 2 x. ( Re ` ( ( abs ` A ) + A ) ) ) e. RR ) |
| 119 | 114 118 | eqeltrd | |- ( A e. CC -> ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) e. RR ) |
| 120 | 119 | adantr | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) e. RR ) |
| 121 | 14 | adantr | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( abs ` ( ( abs ` A ) + A ) ) e. RR ) |
| 122 | 120 121 19 | redivcld | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) e. RR ) |
| 123 | 113 122 | remulcld | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) e. RR ) |
| 124 | sqrtge0 | |- ( ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) -> 0 <_ ( sqrt ` ( abs ` A ) ) ) |
|
| 125 | 3 4 124 | syl2anc | |- ( A e. CC -> 0 <_ ( sqrt ` ( abs ` A ) ) ) |
| 126 | 125 | adantr | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 <_ ( sqrt ` ( abs ` A ) ) ) |
| 127 | negcl | |- ( A e. CC -> -u A e. CC ) |
|
| 128 | releabs | |- ( -u A e. CC -> ( Re ` -u A ) <_ ( abs ` -u A ) ) |
|
| 129 | 127 128 | syl | |- ( A e. CC -> ( Re ` -u A ) <_ ( abs ` -u A ) ) |
| 130 | abscl | |- ( -u A e. CC -> ( abs ` -u A ) e. RR ) |
|
| 131 | 127 130 | syl | |- ( A e. CC -> ( abs ` -u A ) e. RR ) |
| 132 | 127 | recld | |- ( A e. CC -> ( Re ` -u A ) e. RR ) |
| 133 | 131 132 | subge0d | |- ( A e. CC -> ( 0 <_ ( ( abs ` -u A ) - ( Re ` -u A ) ) <-> ( Re ` -u A ) <_ ( abs ` -u A ) ) ) |
| 134 | 129 133 | mpbird | |- ( A e. CC -> 0 <_ ( ( abs ` -u A ) - ( Re ` -u A ) ) ) |
| 135 | readd | |- ( ( ( abs ` A ) e. CC /\ A e. CC ) -> ( Re ` ( ( abs ` A ) + A ) ) = ( ( Re ` ( abs ` A ) ) + ( Re ` A ) ) ) |
|
| 136 | 9 135 | mpancom | |- ( A e. CC -> ( Re ` ( ( abs ` A ) + A ) ) = ( ( Re ` ( abs ` A ) ) + ( Re ` A ) ) ) |
| 137 | 3 | rered | |- ( A e. CC -> ( Re ` ( abs ` A ) ) = ( abs ` A ) ) |
| 138 | absneg | |- ( A e. CC -> ( abs ` -u A ) = ( abs ` A ) ) |
|
| 139 | 137 138 | eqtr4d | |- ( A e. CC -> ( Re ` ( abs ` A ) ) = ( abs ` -u A ) ) |
| 140 | negneg | |- ( A e. CC -> -u -u A = A ) |
|
| 141 | 140 | fveq2d | |- ( A e. CC -> ( Re ` -u -u A ) = ( Re ` A ) ) |
| 142 | 127 | renegd | |- ( A e. CC -> ( Re ` -u -u A ) = -u ( Re ` -u A ) ) |
| 143 | 141 142 | eqtr3d | |- ( A e. CC -> ( Re ` A ) = -u ( Re ` -u A ) ) |
| 144 | 139 143 | oveq12d | |- ( A e. CC -> ( ( Re ` ( abs ` A ) ) + ( Re ` A ) ) = ( ( abs ` -u A ) + -u ( Re ` -u A ) ) ) |
| 145 | 131 | recnd | |- ( A e. CC -> ( abs ` -u A ) e. CC ) |
| 146 | 132 | recnd | |- ( A e. CC -> ( Re ` -u A ) e. CC ) |
| 147 | 145 146 | negsubd | |- ( A e. CC -> ( ( abs ` -u A ) + -u ( Re ` -u A ) ) = ( ( abs ` -u A ) - ( Re ` -u A ) ) ) |
| 148 | 136 144 147 | 3eqtrd | |- ( A e. CC -> ( Re ` ( ( abs ` A ) + A ) ) = ( ( abs ` -u A ) - ( Re ` -u A ) ) ) |
| 149 | 134 148 | breqtrrd | |- ( A e. CC -> 0 <_ ( Re ` ( ( abs ` A ) + A ) ) ) |
| 150 | 0le2 | |- 0 <_ 2 |
|
| 151 | mulge0 | |- ( ( ( 2 e. RR /\ 0 <_ 2 ) /\ ( ( Re ` ( ( abs ` A ) + A ) ) e. RR /\ 0 <_ ( Re ` ( ( abs ` A ) + A ) ) ) ) -> 0 <_ ( 2 x. ( Re ` ( ( abs ` A ) + A ) ) ) ) |
|
| 152 | 115 150 151 | mpanl12 | |- ( ( ( Re ` ( ( abs ` A ) + A ) ) e. RR /\ 0 <_ ( Re ` ( ( abs ` A ) + A ) ) ) -> 0 <_ ( 2 x. ( Re ` ( ( abs ` A ) + A ) ) ) ) |
| 153 | 116 149 152 | syl2anc | |- ( A e. CC -> 0 <_ ( 2 x. ( Re ` ( ( abs ` A ) + A ) ) ) ) |
| 154 | 153 114 | breqtrrd | |- ( A e. CC -> 0 <_ ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) ) |
| 155 | 154 | adantr | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 <_ ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) ) |
| 156 | absge0 | |- ( ( ( abs ` A ) + A ) e. CC -> 0 <_ ( abs ` ( ( abs ` A ) + A ) ) ) |
|
| 157 | 12 156 | syl | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 <_ ( abs ` ( ( abs ` A ) + A ) ) ) |
| 158 | 121 157 19 | ne0gt0d | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 < ( abs ` ( ( abs ` A ) + A ) ) ) |
| 159 | divge0 | |- ( ( ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) e. RR /\ 0 <_ ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) ) /\ ( ( abs ` ( ( abs ` A ) + A ) ) e. RR /\ 0 < ( abs ` ( ( abs ` A ) + A ) ) ) ) -> 0 <_ ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) |
|
| 160 | 120 155 121 158 159 | syl22anc | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 <_ ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) |
| 161 | 113 122 126 160 | mulge0d | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 <_ ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) |
| 162 | 2pos | |- 0 < 2 |
|
| 163 | divge0 | |- ( ( ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) e. RR /\ 0 <_ ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) /\ ( 2 e. RR /\ 0 < 2 ) ) -> 0 <_ ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) / 2 ) ) |
|
| 164 | 115 162 163 | mpanr12 | |- ( ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) e. RR /\ 0 <_ ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) -> 0 <_ ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) / 2 ) ) |
| 165 | 123 161 164 | syl2anc | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 <_ ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) / 2 ) ) |
| 166 | 8 20 | mulcld | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) e. CC ) |
| 167 | 1 166 | eqeltrid | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> B e. CC ) |
| 168 | reval | |- ( B e. CC -> ( Re ` B ) = ( ( B + ( * ` B ) ) / 2 ) ) |
|
| 169 | 167 168 | syl | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( Re ` B ) = ( ( B + ( * ` B ) ) / 2 ) ) |
| 170 | 1 | oveq1i | |- ( B + ( ( sqrt ` ( abs ` A ) ) x. ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) = ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) + ( ( sqrt ` ( abs ` A ) ) x. ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) |
| 171 | 1 | fveq2i | |- ( * ` B ) = ( * ` ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) |
| 172 | 8 20 | cjmuld | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( * ` ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) = ( ( * ` ( sqrt ` ( abs ` A ) ) ) x. ( * ` ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) ) |
| 173 | 171 172 | eqtrid | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( * ` B ) = ( ( * ` ( sqrt ` ( abs ` A ) ) ) x. ( * ` ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) ) |
| 174 | 6 | cjred | |- ( A e. CC -> ( * ` ( sqrt ` ( abs ` A ) ) ) = ( sqrt ` ( abs ` A ) ) ) |
| 175 | 174 | adantr | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( * ` ( sqrt ` ( abs ` A ) ) ) = ( sqrt ` ( abs ` A ) ) ) |
| 176 | 12 16 19 | cjdivd | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( * ` ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) = ( ( * ` ( ( abs ` A ) + A ) ) / ( * ` ( abs ` ( ( abs ` A ) + A ) ) ) ) ) |
| 177 | 121 | cjred | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( * ` ( abs ` ( ( abs ` A ) + A ) ) ) = ( abs ` ( ( abs ` A ) + A ) ) ) |
| 178 | 177 | oveq2d | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( * ` ( ( abs ` A ) + A ) ) / ( * ` ( abs ` ( ( abs ` A ) + A ) ) ) ) = ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) |
| 179 | 176 178 | eqtrd | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( * ` ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) = ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) |
| 180 | 175 179 | oveq12d | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( * ` ( sqrt ` ( abs ` A ) ) ) x. ( * ` ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) = ( ( sqrt ` ( abs ` A ) ) x. ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) |
| 181 | 173 180 | eqtrd | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( * ` B ) = ( ( sqrt ` ( abs ` A ) ) x. ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) |
| 182 | 181 | oveq2d | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( B + ( * ` B ) ) = ( B + ( ( sqrt ` ( abs ` A ) ) x. ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) ) |
| 183 | 12 | cjcld | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( * ` ( ( abs ` A ) + A ) ) e. CC ) |
| 184 | 183 16 19 | divcld | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) e. CC ) |
| 185 | 8 20 184 | adddid | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) + ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) = ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) + ( ( sqrt ` ( abs ` A ) ) x. ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) ) |
| 186 | 170 182 185 | 3eqtr4a | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( B + ( * ` B ) ) = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) + ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) ) |
| 187 | 12 183 16 19 | divdird | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) = ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) + ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) |
| 188 | 187 | oveq2d | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) + ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) ) |
| 189 | 186 188 | eqtr4d | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( B + ( * ` B ) ) = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) |
| 190 | 189 | oveq1d | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( B + ( * ` B ) ) / 2 ) = ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) / 2 ) ) |
| 191 | 169 190 | eqtrd | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( Re ` B ) = ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) / 2 ) ) |
| 192 | 165 191 | breqtrrd | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 <_ ( Re ` B ) ) |
| 193 | subneg | |- ( ( ( abs ` A ) e. CC /\ A e. CC ) -> ( ( abs ` A ) - -u A ) = ( ( abs ` A ) + A ) ) |
|
| 194 | 9 193 | mpancom | |- ( A e. CC -> ( ( abs ` A ) - -u A ) = ( ( abs ` A ) + A ) ) |
| 195 | 194 | eqeq1d | |- ( A e. CC -> ( ( ( abs ` A ) - -u A ) = 0 <-> ( ( abs ` A ) + A ) = 0 ) ) |
| 196 | 9 127 | subeq0ad | |- ( A e. CC -> ( ( ( abs ` A ) - -u A ) = 0 <-> ( abs ` A ) = -u A ) ) |
| 197 | 195 196 | bitr3d | |- ( A e. CC -> ( ( ( abs ` A ) + A ) = 0 <-> ( abs ` A ) = -u A ) ) |
| 198 | 197 | necon3bid | |- ( A e. CC -> ( ( ( abs ` A ) + A ) =/= 0 <-> ( abs ` A ) =/= -u A ) ) |
| 199 | 198 | biimpa | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( abs ` A ) =/= -u A ) |
| 200 | resqcl | |- ( ( _i x. B ) e. RR -> ( ( _i x. B ) ^ 2 ) e. RR ) |
|
| 201 | ax-icn | |- _i e. CC |
|
| 202 | sqmul | |- ( ( _i e. CC /\ B e. CC ) -> ( ( _i x. B ) ^ 2 ) = ( ( _i ^ 2 ) x. ( B ^ 2 ) ) ) |
|
| 203 | 201 167 202 | sylancr | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i x. B ) ^ 2 ) = ( ( _i ^ 2 ) x. ( B ^ 2 ) ) ) |
| 204 | i2 | |- ( _i ^ 2 ) = -u 1 |
|
| 205 | 204 | a1i | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( _i ^ 2 ) = -u 1 ) |
| 206 | 205 112 | oveq12d | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i ^ 2 ) x. ( B ^ 2 ) ) = ( -u 1 x. A ) ) |
| 207 | mulm1 | |- ( A e. CC -> ( -u 1 x. A ) = -u A ) |
|
| 208 | 207 | adantr | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( -u 1 x. A ) = -u A ) |
| 209 | 203 206 208 | 3eqtrd | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i x. B ) ^ 2 ) = -u A ) |
| 210 | 209 | eleq1d | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( _i x. B ) ^ 2 ) e. RR <-> -u A e. RR ) ) |
| 211 | 200 210 | imbitrid | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i x. B ) e. RR -> -u A e. RR ) ) |
| 212 | renegcl | |- ( -u A e. RR -> -u -u A e. RR ) |
|
| 213 | 140 | eleq1d | |- ( A e. CC -> ( -u -u A e. RR <-> A e. RR ) ) |
| 214 | 212 213 | imbitrid | |- ( A e. CC -> ( -u A e. RR -> A e. RR ) ) |
| 215 | 109 211 214 | sylsyld | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i x. B ) e. RR -> A e. RR ) ) |
| 216 | sqge0 | |- ( ( _i x. B ) e. RR -> 0 <_ ( ( _i x. B ) ^ 2 ) ) |
|
| 217 | 209 | breq2d | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( 0 <_ ( ( _i x. B ) ^ 2 ) <-> 0 <_ -u A ) ) |
| 218 | 216 217 | imbitrid | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i x. B ) e. RR -> 0 <_ -u A ) ) |
| 219 | le0neg1 | |- ( A e. RR -> ( A <_ 0 <-> 0 <_ -u A ) ) |
|
| 220 | 219 | biimprcd | |- ( 0 <_ -u A -> ( A e. RR -> A <_ 0 ) ) |
| 221 | 218 215 220 | syl6c | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i x. B ) e. RR -> A <_ 0 ) ) |
| 222 | 215 221 | jcad | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i x. B ) e. RR -> ( A e. RR /\ A <_ 0 ) ) ) |
| 223 | absnid | |- ( ( A e. RR /\ A <_ 0 ) -> ( abs ` A ) = -u A ) |
|
| 224 | 222 223 | syl6 | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i x. B ) e. RR -> ( abs ` A ) = -u A ) ) |
| 225 | 224 | necon3ad | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( abs ` A ) =/= -u A -> -. ( _i x. B ) e. RR ) ) |
| 226 | 199 225 | mpd | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> -. ( _i x. B ) e. RR ) |
| 227 | rpre | |- ( ( _i x. B ) e. RR+ -> ( _i x. B ) e. RR ) |
|
| 228 | 226 227 | nsyl | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> -. ( _i x. B ) e. RR+ ) |
| 229 | df-nel | |- ( ( _i x. B ) e/ RR+ <-> -. ( _i x. B ) e. RR+ ) |
|
| 230 | 228 229 | sylibr | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( _i x. B ) e/ RR+ ) |
| 231 | 112 192 230 | 3jca | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( B ^ 2 ) = A /\ 0 <_ ( Re ` B ) /\ ( _i x. B ) e/ RR+ ) ) |