This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of two nonnegative numbers is nonnegative. (Contributed by NM, 8-Oct-1999) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulge0 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 0 ≤ ( 𝐴 · 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0red | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 0 ∈ ℝ ) | |
| 2 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℝ ) | |
| 3 | 1 2 | leloed | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ 𝐴 ↔ ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) ) |
| 4 | simpr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ ) | |
| 5 | 1 4 | leloed | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ 𝐵 ↔ ( 0 < 𝐵 ∨ 0 = 𝐵 ) ) ) |
| 6 | 3 5 | anbi12d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ↔ ( ( 0 < 𝐴 ∨ 0 = 𝐴 ) ∧ ( 0 < 𝐵 ∨ 0 = 𝐵 ) ) ) ) |
| 7 | 0red | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 < 𝐴 ∧ 0 < 𝐵 ) ) → 0 ∈ ℝ ) | |
| 8 | simpll | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 < 𝐴 ∧ 0 < 𝐵 ) ) → 𝐴 ∈ ℝ ) | |
| 9 | simplr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 < 𝐴 ∧ 0 < 𝐵 ) ) → 𝐵 ∈ ℝ ) | |
| 10 | 8 9 | remulcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 < 𝐴 ∧ 0 < 𝐵 ) ) → ( 𝐴 · 𝐵 ) ∈ ℝ ) |
| 11 | mulgt0 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 0 < ( 𝐴 · 𝐵 ) ) | |
| 12 | 11 | an4s | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 < 𝐴 ∧ 0 < 𝐵 ) ) → 0 < ( 𝐴 · 𝐵 ) ) |
| 13 | 7 10 12 | ltled | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 < 𝐴 ∧ 0 < 𝐵 ) ) → 0 ≤ ( 𝐴 · 𝐵 ) ) |
| 14 | 13 | ex | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 < 𝐴 ∧ 0 < 𝐵 ) → 0 ≤ ( 𝐴 · 𝐵 ) ) ) |
| 15 | 0re | ⊢ 0 ∈ ℝ | |
| 16 | leid | ⊢ ( 0 ∈ ℝ → 0 ≤ 0 ) | |
| 17 | 15 16 | ax-mp | ⊢ 0 ≤ 0 |
| 18 | 4 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℂ ) |
| 19 | 18 | mul02d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 · 𝐵 ) = 0 ) |
| 20 | 17 19 | breqtrrid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 0 ≤ ( 0 · 𝐵 ) ) |
| 21 | oveq1 | ⊢ ( 0 = 𝐴 → ( 0 · 𝐵 ) = ( 𝐴 · 𝐵 ) ) | |
| 22 | 21 | breq2d | ⊢ ( 0 = 𝐴 → ( 0 ≤ ( 0 · 𝐵 ) ↔ 0 ≤ ( 𝐴 · 𝐵 ) ) ) |
| 23 | 20 22 | syl5ibcom | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 = 𝐴 → 0 ≤ ( 𝐴 · 𝐵 ) ) ) |
| 24 | 23 | adantrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 = 𝐴 ∧ 0 < 𝐵 ) → 0 ≤ ( 𝐴 · 𝐵 ) ) ) |
| 25 | 2 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℂ ) |
| 26 | 25 | mul01d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 · 0 ) = 0 ) |
| 27 | 17 26 | breqtrrid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 0 ≤ ( 𝐴 · 0 ) ) |
| 28 | oveq2 | ⊢ ( 0 = 𝐵 → ( 𝐴 · 0 ) = ( 𝐴 · 𝐵 ) ) | |
| 29 | 28 | breq2d | ⊢ ( 0 = 𝐵 → ( 0 ≤ ( 𝐴 · 0 ) ↔ 0 ≤ ( 𝐴 · 𝐵 ) ) ) |
| 30 | 27 29 | syl5ibcom | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 = 𝐵 → 0 ≤ ( 𝐴 · 𝐵 ) ) ) |
| 31 | 30 | adantld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 < 𝐴 ∧ 0 = 𝐵 ) → 0 ≤ ( 𝐴 · 𝐵 ) ) ) |
| 32 | 30 | adantld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 = 𝐴 ∧ 0 = 𝐵 ) → 0 ≤ ( 𝐴 · 𝐵 ) ) ) |
| 33 | 14 24 31 32 | ccased | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( 0 < 𝐴 ∨ 0 = 𝐴 ) ∧ ( 0 < 𝐵 ∨ 0 = 𝐵 ) ) → 0 ≤ ( 𝐴 · 𝐵 ) ) ) |
| 34 | 6 33 | sylbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → 0 ≤ ( 𝐴 · 𝐵 ) ) ) |
| 35 | 34 | imp | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) → 0 ≤ ( 𝐴 · 𝐵 ) ) |
| 36 | 35 | an4s | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 0 ≤ ( 𝐴 · 𝐵 ) ) |