This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Real part distributes over addition. (Contributed by NM, 17-Mar-2005) (Revised by Mario Carneiro, 14-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | readd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( 𝐴 + 𝐵 ) ) = ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recl | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
| 3 | 2 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
| 4 | ax-icn | ⊢ i ∈ ℂ | |
| 5 | imcl | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| 7 | 6 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
| 8 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) | |
| 9 | 4 7 8 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
| 10 | recl | ⊢ ( 𝐵 ∈ ℂ → ( ℜ ‘ 𝐵 ) ∈ ℝ ) | |
| 11 | 10 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
| 12 | 11 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ 𝐵 ) ∈ ℂ ) |
| 13 | imcl | ⊢ ( 𝐵 ∈ ℂ → ( ℑ ‘ 𝐵 ) ∈ ℝ ) | |
| 14 | 13 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
| 15 | 14 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ 𝐵 ) ∈ ℂ ) |
| 16 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐵 ) ∈ ℂ ) → ( i · ( ℑ ‘ 𝐵 ) ) ∈ ℂ ) | |
| 17 | 4 15 16 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( ℑ ‘ 𝐵 ) ) ∈ ℂ ) |
| 18 | 3 9 12 17 | add4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) + ( ( ℜ ‘ 𝐵 ) + ( i · ( ℑ ‘ 𝐵 ) ) ) ) = ( ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ 𝐵 ) ) + ( ( i · ( ℑ ‘ 𝐴 ) ) + ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) |
| 19 | replim | ⊢ ( 𝐴 ∈ ℂ → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) | |
| 20 | replim | ⊢ ( 𝐵 ∈ ℂ → 𝐵 = ( ( ℜ ‘ 𝐵 ) + ( i · ( ℑ ‘ 𝐵 ) ) ) ) | |
| 21 | 19 20 | oveqan12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) = ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) + ( ( ℜ ‘ 𝐵 ) + ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) |
| 22 | 4 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → i ∈ ℂ ) |
| 23 | 22 7 15 | adddid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ 𝐵 ) ) ) = ( ( i · ( ℑ ‘ 𝐴 ) ) + ( i · ( ℑ ‘ 𝐵 ) ) ) ) |
| 24 | 23 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ 𝐵 ) ) + ( i · ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ 𝐵 ) ) ) ) = ( ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ 𝐵 ) ) + ( ( i · ( ℑ ‘ 𝐴 ) ) + ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) |
| 25 | 18 21 24 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) = ( ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ 𝐵 ) ) + ( i · ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ 𝐵 ) ) ) ) ) |
| 26 | 25 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( 𝐴 + 𝐵 ) ) = ( ℜ ‘ ( ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ 𝐵 ) ) + ( i · ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ 𝐵 ) ) ) ) ) ) |
| 27 | readdcl | ⊢ ( ( ( ℜ ‘ 𝐴 ) ∈ ℝ ∧ ( ℜ ‘ 𝐵 ) ∈ ℝ ) → ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ 𝐵 ) ) ∈ ℝ ) | |
| 28 | 1 10 27 | syl2an | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ 𝐵 ) ) ∈ ℝ ) |
| 29 | readdcl | ⊢ ( ( ( ℑ ‘ 𝐴 ) ∈ ℝ ∧ ( ℑ ‘ 𝐵 ) ∈ ℝ ) → ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ 𝐵 ) ) ∈ ℝ ) | |
| 30 | 5 13 29 | syl2an | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ 𝐵 ) ) ∈ ℝ ) |
| 31 | crre | ⊢ ( ( ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ 𝐵 ) ) ∈ ℝ ∧ ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ 𝐵 ) ) ∈ ℝ ) → ( ℜ ‘ ( ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ 𝐵 ) ) + ( i · ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ 𝐵 ) ) ) ) ) = ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ 𝐵 ) ) ) | |
| 32 | 28 30 31 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ 𝐵 ) ) + ( i · ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ 𝐵 ) ) ) ) ) = ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ 𝐵 ) ) ) |
| 33 | 26 32 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( 𝐴 + 𝐵 ) ) = ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ 𝐵 ) ) ) |