This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence and uniqueness for the square root function in general. (Contributed by Mario Carneiro, 9-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqreu | ⊢ ( 𝐴 ∈ ℂ → ∃! 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abscl | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) | |
| 2 | 1 | recnd | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 3 | subneg | ⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( abs ‘ 𝐴 ) − - 𝐴 ) = ( ( abs ‘ 𝐴 ) + 𝐴 ) ) | |
| 4 | 2 3 | mpancom | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) − - 𝐴 ) = ( ( abs ‘ 𝐴 ) + 𝐴 ) ) |
| 5 | 4 | eqeq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) − - 𝐴 ) = 0 ↔ ( ( abs ‘ 𝐴 ) + 𝐴 ) = 0 ) ) |
| 6 | negcl | ⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) | |
| 7 | 2 6 | subeq0ad | ⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) − - 𝐴 ) = 0 ↔ ( abs ‘ 𝐴 ) = - 𝐴 ) ) |
| 8 | 5 7 | bitr3d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) + 𝐴 ) = 0 ↔ ( abs ‘ 𝐴 ) = - 𝐴 ) ) |
| 9 | ax-icn | ⊢ i ∈ ℂ | |
| 10 | absge0 | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( abs ‘ 𝐴 ) ) | |
| 11 | 1 10 | jca | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) ) |
| 12 | eleq1 | ⊢ ( ( abs ‘ 𝐴 ) = - 𝐴 → ( ( abs ‘ 𝐴 ) ∈ ℝ ↔ - 𝐴 ∈ ℝ ) ) | |
| 13 | breq2 | ⊢ ( ( abs ‘ 𝐴 ) = - 𝐴 → ( 0 ≤ ( abs ‘ 𝐴 ) ↔ 0 ≤ - 𝐴 ) ) | |
| 14 | 12 13 | anbi12d | ⊢ ( ( abs ‘ 𝐴 ) = - 𝐴 → ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) ↔ ( - 𝐴 ∈ ℝ ∧ 0 ≤ - 𝐴 ) ) ) |
| 15 | 11 14 | imbitrid | ⊢ ( ( abs ‘ 𝐴 ) = - 𝐴 → ( 𝐴 ∈ ℂ → ( - 𝐴 ∈ ℝ ∧ 0 ≤ - 𝐴 ) ) ) |
| 16 | 15 | impcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = - 𝐴 ) → ( - 𝐴 ∈ ℝ ∧ 0 ≤ - 𝐴 ) ) |
| 17 | resqrtcl | ⊢ ( ( - 𝐴 ∈ ℝ ∧ 0 ≤ - 𝐴 ) → ( √ ‘ - 𝐴 ) ∈ ℝ ) | |
| 18 | 16 17 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = - 𝐴 ) → ( √ ‘ - 𝐴 ) ∈ ℝ ) |
| 19 | 18 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = - 𝐴 ) → ( √ ‘ - 𝐴 ) ∈ ℂ ) |
| 20 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( √ ‘ - 𝐴 ) ∈ ℂ ) → ( i · ( √ ‘ - 𝐴 ) ) ∈ ℂ ) | |
| 21 | 9 19 20 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = - 𝐴 ) → ( i · ( √ ‘ - 𝐴 ) ) ∈ ℂ ) |
| 22 | sqrtneglem | ⊢ ( ( - 𝐴 ∈ ℝ ∧ 0 ≤ - 𝐴 ) → ( ( ( i · ( √ ‘ - 𝐴 ) ) ↑ 2 ) = - - 𝐴 ∧ 0 ≤ ( ℜ ‘ ( i · ( √ ‘ - 𝐴 ) ) ) ∧ ( i · ( i · ( √ ‘ - 𝐴 ) ) ) ∉ ℝ+ ) ) | |
| 23 | 16 22 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = - 𝐴 ) → ( ( ( i · ( √ ‘ - 𝐴 ) ) ↑ 2 ) = - - 𝐴 ∧ 0 ≤ ( ℜ ‘ ( i · ( √ ‘ - 𝐴 ) ) ) ∧ ( i · ( i · ( √ ‘ - 𝐴 ) ) ) ∉ ℝ+ ) ) |
| 24 | negneg | ⊢ ( 𝐴 ∈ ℂ → - - 𝐴 = 𝐴 ) | |
| 25 | 24 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = - 𝐴 ) → - - 𝐴 = 𝐴 ) |
| 26 | 25 | eqeq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = - 𝐴 ) → ( ( ( i · ( √ ‘ - 𝐴 ) ) ↑ 2 ) = - - 𝐴 ↔ ( ( i · ( √ ‘ - 𝐴 ) ) ↑ 2 ) = 𝐴 ) ) |
| 27 | 26 | 3anbi1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = - 𝐴 ) → ( ( ( ( i · ( √ ‘ - 𝐴 ) ) ↑ 2 ) = - - 𝐴 ∧ 0 ≤ ( ℜ ‘ ( i · ( √ ‘ - 𝐴 ) ) ) ∧ ( i · ( i · ( √ ‘ - 𝐴 ) ) ) ∉ ℝ+ ) ↔ ( ( ( i · ( √ ‘ - 𝐴 ) ) ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ ( i · ( √ ‘ - 𝐴 ) ) ) ∧ ( i · ( i · ( √ ‘ - 𝐴 ) ) ) ∉ ℝ+ ) ) ) |
| 28 | 23 27 | mpbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = - 𝐴 ) → ( ( ( i · ( √ ‘ - 𝐴 ) ) ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ ( i · ( √ ‘ - 𝐴 ) ) ) ∧ ( i · ( i · ( √ ‘ - 𝐴 ) ) ) ∉ ℝ+ ) ) |
| 29 | oveq1 | ⊢ ( 𝑥 = ( i · ( √ ‘ - 𝐴 ) ) → ( 𝑥 ↑ 2 ) = ( ( i · ( √ ‘ - 𝐴 ) ) ↑ 2 ) ) | |
| 30 | 29 | eqeq1d | ⊢ ( 𝑥 = ( i · ( √ ‘ - 𝐴 ) ) → ( ( 𝑥 ↑ 2 ) = 𝐴 ↔ ( ( i · ( √ ‘ - 𝐴 ) ) ↑ 2 ) = 𝐴 ) ) |
| 31 | fveq2 | ⊢ ( 𝑥 = ( i · ( √ ‘ - 𝐴 ) ) → ( ℜ ‘ 𝑥 ) = ( ℜ ‘ ( i · ( √ ‘ - 𝐴 ) ) ) ) | |
| 32 | 31 | breq2d | ⊢ ( 𝑥 = ( i · ( √ ‘ - 𝐴 ) ) → ( 0 ≤ ( ℜ ‘ 𝑥 ) ↔ 0 ≤ ( ℜ ‘ ( i · ( √ ‘ - 𝐴 ) ) ) ) ) |
| 33 | oveq2 | ⊢ ( 𝑥 = ( i · ( √ ‘ - 𝐴 ) ) → ( i · 𝑥 ) = ( i · ( i · ( √ ‘ - 𝐴 ) ) ) ) | |
| 34 | neleq1 | ⊢ ( ( i · 𝑥 ) = ( i · ( i · ( √ ‘ - 𝐴 ) ) ) → ( ( i · 𝑥 ) ∉ ℝ+ ↔ ( i · ( i · ( √ ‘ - 𝐴 ) ) ) ∉ ℝ+ ) ) | |
| 35 | 33 34 | syl | ⊢ ( 𝑥 = ( i · ( √ ‘ - 𝐴 ) ) → ( ( i · 𝑥 ) ∉ ℝ+ ↔ ( i · ( i · ( √ ‘ - 𝐴 ) ) ) ∉ ℝ+ ) ) |
| 36 | 30 32 35 | 3anbi123d | ⊢ ( 𝑥 = ( i · ( √ ‘ - 𝐴 ) ) → ( ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ↔ ( ( ( i · ( √ ‘ - 𝐴 ) ) ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ ( i · ( √ ‘ - 𝐴 ) ) ) ∧ ( i · ( i · ( √ ‘ - 𝐴 ) ) ) ∉ ℝ+ ) ) ) |
| 37 | 36 | rspcev | ⊢ ( ( ( i · ( √ ‘ - 𝐴 ) ) ∈ ℂ ∧ ( ( ( i · ( √ ‘ - 𝐴 ) ) ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ ( i · ( √ ‘ - 𝐴 ) ) ) ∧ ( i · ( i · ( √ ‘ - 𝐴 ) ) ) ∉ ℝ+ ) ) → ∃ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) |
| 38 | 21 28 37 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = - 𝐴 ) → ∃ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) |
| 39 | 38 | ex | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) = - 𝐴 → ∃ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ) |
| 40 | 8 39 | sylbid | ⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) + 𝐴 ) = 0 → ∃ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ) |
| 41 | resqrtcl | ⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) → ( √ ‘ ( abs ‘ 𝐴 ) ) ∈ ℝ ) | |
| 42 | 1 10 41 | syl2anc | ⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( abs ‘ 𝐴 ) ) ∈ ℝ ) |
| 43 | 42 | recnd | ⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( abs ‘ 𝐴 ) ) ∈ ℂ ) |
| 44 | 43 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( √ ‘ ( abs ‘ 𝐴 ) ) ∈ ℂ ) |
| 45 | addcl | ⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( abs ‘ 𝐴 ) + 𝐴 ) ∈ ℂ ) | |
| 46 | 2 45 | mpancom | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) + 𝐴 ) ∈ ℂ ) |
| 47 | 46 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( abs ‘ 𝐴 ) + 𝐴 ) ∈ ℂ ) |
| 48 | abscl | ⊢ ( ( ( abs ‘ 𝐴 ) + 𝐴 ) ∈ ℂ → ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ∈ ℝ ) | |
| 49 | 46 48 | syl | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ∈ ℝ ) |
| 50 | 49 | recnd | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ∈ ℂ ) |
| 51 | 50 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ∈ ℂ ) |
| 52 | 46 | abs00ad | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) = 0 ↔ ( ( abs ‘ 𝐴 ) + 𝐴 ) = 0 ) ) |
| 53 | 52 | necon3bid | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ≠ 0 ↔ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) ) |
| 54 | 53 | biimpar | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ≠ 0 ) |
| 55 | 47 51 54 | divcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ∈ ℂ ) |
| 56 | 44 55 | mulcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ∈ ℂ ) |
| 57 | eqid | ⊢ ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) = ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) | |
| 58 | 57 | sqreulem | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) ∧ ( i · ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) ∉ ℝ+ ) ) |
| 59 | oveq1 | ⊢ ( 𝑥 = ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) → ( 𝑥 ↑ 2 ) = ( ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ↑ 2 ) ) | |
| 60 | 59 | eqeq1d | ⊢ ( 𝑥 = ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) → ( ( 𝑥 ↑ 2 ) = 𝐴 ↔ ( ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ↑ 2 ) = 𝐴 ) ) |
| 61 | fveq2 | ⊢ ( 𝑥 = ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) → ( ℜ ‘ 𝑥 ) = ( ℜ ‘ ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) ) | |
| 62 | 61 | breq2d | ⊢ ( 𝑥 = ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) → ( 0 ≤ ( ℜ ‘ 𝑥 ) ↔ 0 ≤ ( ℜ ‘ ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) ) ) |
| 63 | oveq2 | ⊢ ( 𝑥 = ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) → ( i · 𝑥 ) = ( i · ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) ) | |
| 64 | neleq1 | ⊢ ( ( i · 𝑥 ) = ( i · ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) → ( ( i · 𝑥 ) ∉ ℝ+ ↔ ( i · ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) ∉ ℝ+ ) ) | |
| 65 | 63 64 | syl | ⊢ ( 𝑥 = ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) → ( ( i · 𝑥 ) ∉ ℝ+ ↔ ( i · ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) ∉ ℝ+ ) ) |
| 66 | 60 62 65 | 3anbi123d | ⊢ ( 𝑥 = ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) → ( ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ↔ ( ( ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) ∧ ( i · ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) ∉ ℝ+ ) ) ) |
| 67 | 66 | rspcev | ⊢ ( ( ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ∈ ℂ ∧ ( ( ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) ∧ ( i · ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) ∉ ℝ+ ) ) → ∃ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) |
| 68 | 56 58 67 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ∃ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) |
| 69 | 68 | ex | ⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 → ∃ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ) |
| 70 | 40 69 | pm2.61dne | ⊢ ( 𝐴 ∈ ℂ → ∃ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) |
| 71 | sqrmo | ⊢ ( 𝐴 ∈ ℂ → ∃* 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) | |
| 72 | reu5 | ⊢ ( ∃! 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ↔ ( ∃ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ∧ ∃* 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ) | |
| 73 | 70 71 72 | sylanbrc | ⊢ ( 𝐴 ∈ ℂ → ∃! 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) |