This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Complex conjugate distributes over addition. Proposition 10-3.4(a) of Gleason p. 133. (Contributed by NM, 31-Jul-1999) (Revised by Mario Carneiro, 14-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cjadd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∗ ‘ ( 𝐴 + 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) + ( ∗ ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | readd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( 𝐴 + 𝐵 ) ) = ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ 𝐵 ) ) ) | |
| 2 | imadd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ ( 𝐴 + 𝐵 ) ) = ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ 𝐵 ) ) ) | |
| 3 | 2 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( ℑ ‘ ( 𝐴 + 𝐵 ) ) ) = ( i · ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ 𝐵 ) ) ) ) |
| 4 | ax-icn | ⊢ i ∈ ℂ | |
| 5 | 4 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → i ∈ ℂ ) |
| 6 | imcl | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| 8 | 7 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
| 9 | imcl | ⊢ ( 𝐵 ∈ ℂ → ( ℑ ‘ 𝐵 ) ∈ ℝ ) | |
| 10 | 9 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
| 11 | 10 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ 𝐵 ) ∈ ℂ ) |
| 12 | 5 8 11 | adddid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ 𝐵 ) ) ) = ( ( i · ( ℑ ‘ 𝐴 ) ) + ( i · ( ℑ ‘ 𝐵 ) ) ) ) |
| 13 | 3 12 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( ℑ ‘ ( 𝐴 + 𝐵 ) ) ) = ( ( i · ( ℑ ‘ 𝐴 ) ) + ( i · ( ℑ ‘ 𝐵 ) ) ) ) |
| 14 | 1 13 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℜ ‘ ( 𝐴 + 𝐵 ) ) − ( i · ( ℑ ‘ ( 𝐴 + 𝐵 ) ) ) ) = ( ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ 𝐵 ) ) − ( ( i · ( ℑ ‘ 𝐴 ) ) + ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) |
| 15 | recl | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) | |
| 16 | 15 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
| 17 | 16 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
| 18 | recl | ⊢ ( 𝐵 ∈ ℂ → ( ℜ ‘ 𝐵 ) ∈ ℝ ) | |
| 19 | 18 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
| 20 | 19 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ 𝐵 ) ∈ ℂ ) |
| 21 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) | |
| 22 | 4 8 21 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
| 23 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐵 ) ∈ ℂ ) → ( i · ( ℑ ‘ 𝐵 ) ) ∈ ℂ ) | |
| 24 | 4 11 23 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( ℑ ‘ 𝐵 ) ) ∈ ℂ ) |
| 25 | 17 20 22 24 | addsub4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ 𝐵 ) ) − ( ( i · ( ℑ ‘ 𝐴 ) ) + ( i · ( ℑ ‘ 𝐵 ) ) ) ) = ( ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) + ( ( ℜ ‘ 𝐵 ) − ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) |
| 26 | 14 25 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℜ ‘ ( 𝐴 + 𝐵 ) ) − ( i · ( ℑ ‘ ( 𝐴 + 𝐵 ) ) ) ) = ( ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) + ( ( ℜ ‘ 𝐵 ) − ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) |
| 27 | addcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) ∈ ℂ ) | |
| 28 | remim | ⊢ ( ( 𝐴 + 𝐵 ) ∈ ℂ → ( ∗ ‘ ( 𝐴 + 𝐵 ) ) = ( ( ℜ ‘ ( 𝐴 + 𝐵 ) ) − ( i · ( ℑ ‘ ( 𝐴 + 𝐵 ) ) ) ) ) | |
| 29 | 27 28 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∗ ‘ ( 𝐴 + 𝐵 ) ) = ( ( ℜ ‘ ( 𝐴 + 𝐵 ) ) − ( i · ( ℑ ‘ ( 𝐴 + 𝐵 ) ) ) ) ) |
| 30 | remim | ⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) = ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) | |
| 31 | remim | ⊢ ( 𝐵 ∈ ℂ → ( ∗ ‘ 𝐵 ) = ( ( ℜ ‘ 𝐵 ) − ( i · ( ℑ ‘ 𝐵 ) ) ) ) | |
| 32 | 30 31 | oveqan12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ∗ ‘ 𝐴 ) + ( ∗ ‘ 𝐵 ) ) = ( ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) + ( ( ℜ ‘ 𝐵 ) − ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) |
| 33 | 26 29 32 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∗ ‘ ( 𝐴 + 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) + ( ∗ ‘ 𝐵 ) ) ) |