This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Contraposition law for subsets. (Contributed by NM, 22-Mar-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssconb | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝐴 ⊆ ( 𝐶 ∖ 𝐵 ) ↔ 𝐵 ⊆ ( 𝐶 ∖ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel | ⊢ ( 𝐴 ⊆ 𝐶 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ) | |
| 2 | ssel | ⊢ ( 𝐵 ⊆ 𝐶 → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶 ) ) | |
| 3 | pm5.1 | ⊢ ( ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶 ) ) → ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶 ) ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶 ) ) ) |
| 5 | con2b | ⊢ ( ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐵 → ¬ 𝑥 ∈ 𝐴 ) ) | |
| 6 | 5 | a1i | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐵 → ¬ 𝑥 ∈ 𝐴 ) ) ) |
| 7 | 4 6 | anbi12d | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ) ↔ ( ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 → ¬ 𝑥 ∈ 𝐴 ) ) ) ) |
| 8 | jcab | ⊢ ( ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵 ) ) ↔ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ) ) | |
| 9 | jcab | ⊢ ( ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐴 ) ) ↔ ( ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 → ¬ 𝑥 ∈ 𝐴 ) ) ) | |
| 10 | 7 8 9 | 3bitr4g | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵 ) ) ↔ ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐴 ) ) ) ) |
| 11 | eldif | ⊢ ( 𝑥 ∈ ( 𝐶 ∖ 𝐵 ) ↔ ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵 ) ) | |
| 12 | 11 | imbi2i | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐶 ∖ 𝐵 ) ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵 ) ) ) |
| 13 | eldif | ⊢ ( 𝑥 ∈ ( 𝐶 ∖ 𝐴 ) ↔ ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐴 ) ) | |
| 14 | 13 | imbi2i | ⊢ ( ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ( 𝐶 ∖ 𝐴 ) ) ↔ ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐴 ) ) ) |
| 15 | 10 12 14 | 3bitr4g | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐶 ∖ 𝐵 ) ) ↔ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ( 𝐶 ∖ 𝐴 ) ) ) ) |
| 16 | 15 | albidv | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐶 ∖ 𝐵 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ( 𝐶 ∖ 𝐴 ) ) ) ) |
| 17 | df-ss | ⊢ ( 𝐴 ⊆ ( 𝐶 ∖ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐶 ∖ 𝐵 ) ) ) | |
| 18 | df-ss | ⊢ ( 𝐵 ⊆ ( 𝐶 ∖ 𝐴 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ( 𝐶 ∖ 𝐴 ) ) ) | |
| 19 | 16 17 18 | 3bitr4g | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝐴 ⊆ ( 𝐶 ∖ 𝐵 ) ↔ 𝐵 ⊆ ( 𝐶 ∖ 𝐴 ) ) ) |