This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rpnnen2.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) | |
| Assertion | rpnnen2lem1 | ⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑁 ) = if ( 𝑁 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑁 ) , 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpnnen2.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) | |
| 2 | nnex | ⊢ ℕ ∈ V | |
| 3 | 2 | elpw2 | ⊢ ( 𝐴 ∈ 𝒫 ℕ ↔ 𝐴 ⊆ ℕ ) |
| 4 | eleq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝑛 ∈ 𝑥 ↔ 𝑛 ∈ 𝐴 ) ) | |
| 5 | 4 | ifbid | ⊢ ( 𝑥 = 𝐴 → if ( 𝑛 ∈ 𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) = if ( 𝑛 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) |
| 6 | 5 | mpteq2dv | ⊢ ( 𝑥 = 𝐴 → ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) |
| 7 | 2 | mptex | ⊢ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ∈ V |
| 8 | 6 1 7 | fvmpt | ⊢ ( 𝐴 ∈ 𝒫 ℕ → ( 𝐹 ‘ 𝐴 ) = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) |
| 9 | 3 8 | sylbir | ⊢ ( 𝐴 ⊆ ℕ → ( 𝐹 ‘ 𝐴 ) = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) |
| 10 | 9 | fveq1d | ⊢ ( 𝐴 ⊆ ℕ → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑁 ) = ( ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ‘ 𝑁 ) ) |
| 11 | eleq1 | ⊢ ( 𝑛 = 𝑁 → ( 𝑛 ∈ 𝐴 ↔ 𝑁 ∈ 𝐴 ) ) | |
| 12 | oveq2 | ⊢ ( 𝑛 = 𝑁 → ( ( 1 / 3 ) ↑ 𝑛 ) = ( ( 1 / 3 ) ↑ 𝑁 ) ) | |
| 13 | 11 12 | ifbieq1d | ⊢ ( 𝑛 = 𝑁 → if ( 𝑛 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) = if ( 𝑁 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑁 ) , 0 ) ) |
| 14 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) | |
| 15 | ovex | ⊢ ( ( 1 / 3 ) ↑ 𝑁 ) ∈ V | |
| 16 | c0ex | ⊢ 0 ∈ V | |
| 17 | 15 16 | ifex | ⊢ if ( 𝑁 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑁 ) , 0 ) ∈ V |
| 18 | 13 14 17 | fvmpt | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ‘ 𝑁 ) = if ( 𝑁 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑁 ) , 0 ) ) |
| 19 | 10 18 | sylan9eq | ⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑁 ) = if ( 𝑁 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑁 ) , 0 ) ) |