This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rpnnen2.1 | |- F = ( x e. ~P NN |-> ( n e. NN |-> if ( n e. x , ( ( 1 / 3 ) ^ n ) , 0 ) ) ) |
|
| rpnnen2.2 | |- ( ph -> A C_ NN ) |
||
| rpnnen2.3 | |- ( ph -> B C_ NN ) |
||
| rpnnen2.4 | |- ( ph -> m e. ( A \ B ) ) |
||
| rpnnen2.5 | |- ( ph -> A. n e. NN ( n < m -> ( n e. A <-> n e. B ) ) ) |
||
| rpnnen2.6 | |- ( ps <-> sum_ k e. NN ( ( F ` A ) ` k ) = sum_ k e. NN ( ( F ` B ) ` k ) ) |
||
| Assertion | rpnnen2lem11 | |- ( ph -> -. ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpnnen2.1 | |- F = ( x e. ~P NN |-> ( n e. NN |-> if ( n e. x , ( ( 1 / 3 ) ^ n ) , 0 ) ) ) |
|
| 2 | rpnnen2.2 | |- ( ph -> A C_ NN ) |
|
| 3 | rpnnen2.3 | |- ( ph -> B C_ NN ) |
|
| 4 | rpnnen2.4 | |- ( ph -> m e. ( A \ B ) ) |
|
| 5 | rpnnen2.5 | |- ( ph -> A. n e. NN ( n < m -> ( n e. A <-> n e. B ) ) ) |
|
| 6 | rpnnen2.6 | |- ( ps <-> sum_ k e. NN ( ( F ` A ) ` k ) = sum_ k e. NN ( ( F ` B ) ` k ) ) |
|
| 7 | eldifi | |- ( m e. ( A \ B ) -> m e. A ) |
|
| 8 | ssel2 | |- ( ( A C_ NN /\ m e. A ) -> m e. NN ) |
|
| 9 | 7 8 | sylan2 | |- ( ( A C_ NN /\ m e. ( A \ B ) ) -> m e. NN ) |
| 10 | 2 4 9 | syl2anc | |- ( ph -> m e. NN ) |
| 11 | 1 | rpnnen2lem6 | |- ( ( B C_ NN /\ m e. NN ) -> sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) e. RR ) |
| 12 | 3 10 11 | syl2anc | |- ( ph -> sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) e. RR ) |
| 13 | 3nn | |- 3 e. NN |
|
| 14 | nnrecre | |- ( 3 e. NN -> ( 1 / 3 ) e. RR ) |
|
| 15 | 13 14 | ax-mp | |- ( 1 / 3 ) e. RR |
| 16 | 10 | nnnn0d | |- ( ph -> m e. NN0 ) |
| 17 | reexpcl | |- ( ( ( 1 / 3 ) e. RR /\ m e. NN0 ) -> ( ( 1 / 3 ) ^ m ) e. RR ) |
|
| 18 | 15 16 17 | sylancr | |- ( ph -> ( ( 1 / 3 ) ^ m ) e. RR ) |
| 19 | 1 | rpnnen2lem6 | |- ( ( A C_ NN /\ m e. NN ) -> sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) e. RR ) |
| 20 | 2 10 19 | syl2anc | |- ( ph -> sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) e. RR ) |
| 21 | nnrp | |- ( 3 e. NN -> 3 e. RR+ ) |
|
| 22 | rpreccl | |- ( 3 e. RR+ -> ( 1 / 3 ) e. RR+ ) |
|
| 23 | 13 21 22 | mp2b | |- ( 1 / 3 ) e. RR+ |
| 24 | 10 | nnzd | |- ( ph -> m e. ZZ ) |
| 25 | rpexpcl | |- ( ( ( 1 / 3 ) e. RR+ /\ m e. ZZ ) -> ( ( 1 / 3 ) ^ m ) e. RR+ ) |
|
| 26 | 23 24 25 | sylancr | |- ( ph -> ( ( 1 / 3 ) ^ m ) e. RR+ ) |
| 27 | 26 | rpred | |- ( ph -> ( ( 1 / 3 ) ^ m ) e. RR ) |
| 28 | 27 | rehalfcld | |- ( ph -> ( ( ( 1 / 3 ) ^ m ) / 2 ) e. RR ) |
| 29 | 4 | snssd | |- ( ph -> { m } C_ ( A \ B ) ) |
| 30 | 2 | ssdifd | |- ( ph -> ( A \ B ) C_ ( NN \ B ) ) |
| 31 | 29 30 | sstrd | |- ( ph -> { m } C_ ( NN \ B ) ) |
| 32 | 10 | snssd | |- ( ph -> { m } C_ NN ) |
| 33 | ssconb | |- ( ( B C_ NN /\ { m } C_ NN ) -> ( B C_ ( NN \ { m } ) <-> { m } C_ ( NN \ B ) ) ) |
|
| 34 | 3 32 33 | syl2anc | |- ( ph -> ( B C_ ( NN \ { m } ) <-> { m } C_ ( NN \ B ) ) ) |
| 35 | 31 34 | mpbird | |- ( ph -> B C_ ( NN \ { m } ) ) |
| 36 | difssd | |- ( ph -> ( NN \ { m } ) C_ NN ) |
|
| 37 | 1 | rpnnen2lem7 | |- ( ( B C_ ( NN \ { m } ) /\ ( NN \ { m } ) C_ NN /\ m e. NN ) -> sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) <_ sum_ k e. ( ZZ>= ` m ) ( ( F ` ( NN \ { m } ) ) ` k ) ) |
| 38 | 35 36 10 37 | syl3anc | |- ( ph -> sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) <_ sum_ k e. ( ZZ>= ` m ) ( ( F ` ( NN \ { m } ) ) ` k ) ) |
| 39 | 1 | rpnnen2lem9 | |- ( m e. NN -> sum_ k e. ( ZZ>= ` m ) ( ( F ` ( NN \ { m } ) ) ` k ) = ( 0 + ( ( ( 1 / 3 ) ^ ( m + 1 ) ) / ( 1 - ( 1 / 3 ) ) ) ) ) |
| 40 | 10 39 | syl | |- ( ph -> sum_ k e. ( ZZ>= ` m ) ( ( F ` ( NN \ { m } ) ) ` k ) = ( 0 + ( ( ( 1 / 3 ) ^ ( m + 1 ) ) / ( 1 - ( 1 / 3 ) ) ) ) ) |
| 41 | 15 | recni | |- ( 1 / 3 ) e. CC |
| 42 | expp1 | |- ( ( ( 1 / 3 ) e. CC /\ m e. NN0 ) -> ( ( 1 / 3 ) ^ ( m + 1 ) ) = ( ( ( 1 / 3 ) ^ m ) x. ( 1 / 3 ) ) ) |
|
| 43 | 41 16 42 | sylancr | |- ( ph -> ( ( 1 / 3 ) ^ ( m + 1 ) ) = ( ( ( 1 / 3 ) ^ m ) x. ( 1 / 3 ) ) ) |
| 44 | 27 | recnd | |- ( ph -> ( ( 1 / 3 ) ^ m ) e. CC ) |
| 45 | 3cn | |- 3 e. CC |
|
| 46 | 3ne0 | |- 3 =/= 0 |
|
| 47 | divrec | |- ( ( ( ( 1 / 3 ) ^ m ) e. CC /\ 3 e. CC /\ 3 =/= 0 ) -> ( ( ( 1 / 3 ) ^ m ) / 3 ) = ( ( ( 1 / 3 ) ^ m ) x. ( 1 / 3 ) ) ) |
|
| 48 | 45 46 47 | mp3an23 | |- ( ( ( 1 / 3 ) ^ m ) e. CC -> ( ( ( 1 / 3 ) ^ m ) / 3 ) = ( ( ( 1 / 3 ) ^ m ) x. ( 1 / 3 ) ) ) |
| 49 | 44 48 | syl | |- ( ph -> ( ( ( 1 / 3 ) ^ m ) / 3 ) = ( ( ( 1 / 3 ) ^ m ) x. ( 1 / 3 ) ) ) |
| 50 | 43 49 | eqtr4d | |- ( ph -> ( ( 1 / 3 ) ^ ( m + 1 ) ) = ( ( ( 1 / 3 ) ^ m ) / 3 ) ) |
| 51 | 50 | oveq1d | |- ( ph -> ( ( ( 1 / 3 ) ^ ( m + 1 ) ) / ( 1 - ( 1 / 3 ) ) ) = ( ( ( ( 1 / 3 ) ^ m ) / 3 ) / ( 1 - ( 1 / 3 ) ) ) ) |
| 52 | ax-1cn | |- 1 e. CC |
|
| 53 | 45 46 | pm3.2i | |- ( 3 e. CC /\ 3 =/= 0 ) |
| 54 | divsubdir | |- ( ( 3 e. CC /\ 1 e. CC /\ ( 3 e. CC /\ 3 =/= 0 ) ) -> ( ( 3 - 1 ) / 3 ) = ( ( 3 / 3 ) - ( 1 / 3 ) ) ) |
|
| 55 | 45 52 53 54 | mp3an | |- ( ( 3 - 1 ) / 3 ) = ( ( 3 / 3 ) - ( 1 / 3 ) ) |
| 56 | 3m1e2 | |- ( 3 - 1 ) = 2 |
|
| 57 | 56 | oveq1i | |- ( ( 3 - 1 ) / 3 ) = ( 2 / 3 ) |
| 58 | 45 46 | dividi | |- ( 3 / 3 ) = 1 |
| 59 | 58 | oveq1i | |- ( ( 3 / 3 ) - ( 1 / 3 ) ) = ( 1 - ( 1 / 3 ) ) |
| 60 | 55 57 59 | 3eqtr3ri | |- ( 1 - ( 1 / 3 ) ) = ( 2 / 3 ) |
| 61 | 60 | oveq2i | |- ( ( ( ( 1 / 3 ) ^ m ) / 3 ) / ( 1 - ( 1 / 3 ) ) ) = ( ( ( ( 1 / 3 ) ^ m ) / 3 ) / ( 2 / 3 ) ) |
| 62 | 2cnne0 | |- ( 2 e. CC /\ 2 =/= 0 ) |
|
| 63 | divcan7 | |- ( ( ( ( 1 / 3 ) ^ m ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( 3 e. CC /\ 3 =/= 0 ) ) -> ( ( ( ( 1 / 3 ) ^ m ) / 3 ) / ( 2 / 3 ) ) = ( ( ( 1 / 3 ) ^ m ) / 2 ) ) |
|
| 64 | 62 53 63 | mp3an23 | |- ( ( ( 1 / 3 ) ^ m ) e. CC -> ( ( ( ( 1 / 3 ) ^ m ) / 3 ) / ( 2 / 3 ) ) = ( ( ( 1 / 3 ) ^ m ) / 2 ) ) |
| 65 | 44 64 | syl | |- ( ph -> ( ( ( ( 1 / 3 ) ^ m ) / 3 ) / ( 2 / 3 ) ) = ( ( ( 1 / 3 ) ^ m ) / 2 ) ) |
| 66 | 61 65 | eqtrid | |- ( ph -> ( ( ( ( 1 / 3 ) ^ m ) / 3 ) / ( 1 - ( 1 / 3 ) ) ) = ( ( ( 1 / 3 ) ^ m ) / 2 ) ) |
| 67 | 51 66 | eqtrd | |- ( ph -> ( ( ( 1 / 3 ) ^ ( m + 1 ) ) / ( 1 - ( 1 / 3 ) ) ) = ( ( ( 1 / 3 ) ^ m ) / 2 ) ) |
| 68 | 67 | oveq2d | |- ( ph -> ( 0 + ( ( ( 1 / 3 ) ^ ( m + 1 ) ) / ( 1 - ( 1 / 3 ) ) ) ) = ( 0 + ( ( ( 1 / 3 ) ^ m ) / 2 ) ) ) |
| 69 | 28 | recnd | |- ( ph -> ( ( ( 1 / 3 ) ^ m ) / 2 ) e. CC ) |
| 70 | 69 | addlidd | |- ( ph -> ( 0 + ( ( ( 1 / 3 ) ^ m ) / 2 ) ) = ( ( ( 1 / 3 ) ^ m ) / 2 ) ) |
| 71 | 40 68 70 | 3eqtrd | |- ( ph -> sum_ k e. ( ZZ>= ` m ) ( ( F ` ( NN \ { m } ) ) ` k ) = ( ( ( 1 / 3 ) ^ m ) / 2 ) ) |
| 72 | 38 71 | breqtrd | |- ( ph -> sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) <_ ( ( ( 1 / 3 ) ^ m ) / 2 ) ) |
| 73 | rphalflt | |- ( ( ( 1 / 3 ) ^ m ) e. RR+ -> ( ( ( 1 / 3 ) ^ m ) / 2 ) < ( ( 1 / 3 ) ^ m ) ) |
|
| 74 | 26 73 | syl | |- ( ph -> ( ( ( 1 / 3 ) ^ m ) / 2 ) < ( ( 1 / 3 ) ^ m ) ) |
| 75 | 12 28 27 72 74 | lelttrd | |- ( ph -> sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) < ( ( 1 / 3 ) ^ m ) ) |
| 76 | eluznn | |- ( ( m e. NN /\ k e. ( ZZ>= ` m ) ) -> k e. NN ) |
|
| 77 | 10 76 | sylan | |- ( ( ph /\ k e. ( ZZ>= ` m ) ) -> k e. NN ) |
| 78 | 1 | rpnnen2lem1 | |- ( ( { m } C_ NN /\ k e. NN ) -> ( ( F ` { m } ) ` k ) = if ( k e. { m } , ( ( 1 / 3 ) ^ k ) , 0 ) ) |
| 79 | 32 77 78 | syl2an2r | |- ( ( ph /\ k e. ( ZZ>= ` m ) ) -> ( ( F ` { m } ) ` k ) = if ( k e. { m } , ( ( 1 / 3 ) ^ k ) , 0 ) ) |
| 80 | 79 | sumeq2dv | |- ( ph -> sum_ k e. ( ZZ>= ` m ) ( ( F ` { m } ) ` k ) = sum_ k e. ( ZZ>= ` m ) if ( k e. { m } , ( ( 1 / 3 ) ^ k ) , 0 ) ) |
| 81 | uzid | |- ( m e. ZZ -> m e. ( ZZ>= ` m ) ) |
|
| 82 | 24 81 | syl | |- ( ph -> m e. ( ZZ>= ` m ) ) |
| 83 | 82 | snssd | |- ( ph -> { m } C_ ( ZZ>= ` m ) ) |
| 84 | vex | |- m e. _V |
|
| 85 | oveq2 | |- ( k = m -> ( ( 1 / 3 ) ^ k ) = ( ( 1 / 3 ) ^ m ) ) |
|
| 86 | 85 | eleq1d | |- ( k = m -> ( ( ( 1 / 3 ) ^ k ) e. CC <-> ( ( 1 / 3 ) ^ m ) e. CC ) ) |
| 87 | 84 86 | ralsn | |- ( A. k e. { m } ( ( 1 / 3 ) ^ k ) e. CC <-> ( ( 1 / 3 ) ^ m ) e. CC ) |
| 88 | 44 87 | sylibr | |- ( ph -> A. k e. { m } ( ( 1 / 3 ) ^ k ) e. CC ) |
| 89 | ssidd | |- ( ph -> ( ZZ>= ` m ) C_ ( ZZ>= ` m ) ) |
|
| 90 | 89 | orcd | |- ( ph -> ( ( ZZ>= ` m ) C_ ( ZZ>= ` m ) \/ ( ZZ>= ` m ) e. Fin ) ) |
| 91 | sumss2 | |- ( ( ( { m } C_ ( ZZ>= ` m ) /\ A. k e. { m } ( ( 1 / 3 ) ^ k ) e. CC ) /\ ( ( ZZ>= ` m ) C_ ( ZZ>= ` m ) \/ ( ZZ>= ` m ) e. Fin ) ) -> sum_ k e. { m } ( ( 1 / 3 ) ^ k ) = sum_ k e. ( ZZ>= ` m ) if ( k e. { m } , ( ( 1 / 3 ) ^ k ) , 0 ) ) |
|
| 92 | 83 88 90 91 | syl21anc | |- ( ph -> sum_ k e. { m } ( ( 1 / 3 ) ^ k ) = sum_ k e. ( ZZ>= ` m ) if ( k e. { m } , ( ( 1 / 3 ) ^ k ) , 0 ) ) |
| 93 | 85 | sumsn | |- ( ( m e. NN /\ ( ( 1 / 3 ) ^ m ) e. CC ) -> sum_ k e. { m } ( ( 1 / 3 ) ^ k ) = ( ( 1 / 3 ) ^ m ) ) |
| 94 | 10 44 93 | syl2anc | |- ( ph -> sum_ k e. { m } ( ( 1 / 3 ) ^ k ) = ( ( 1 / 3 ) ^ m ) ) |
| 95 | 80 92 94 | 3eqtr2d | |- ( ph -> sum_ k e. ( ZZ>= ` m ) ( ( F ` { m } ) ` k ) = ( ( 1 / 3 ) ^ m ) ) |
| 96 | 4 7 | syl | |- ( ph -> m e. A ) |
| 97 | 96 | snssd | |- ( ph -> { m } C_ A ) |
| 98 | 1 | rpnnen2lem7 | |- ( ( { m } C_ A /\ A C_ NN /\ m e. NN ) -> sum_ k e. ( ZZ>= ` m ) ( ( F ` { m } ) ` k ) <_ sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) ) |
| 99 | 97 2 10 98 | syl3anc | |- ( ph -> sum_ k e. ( ZZ>= ` m ) ( ( F ` { m } ) ` k ) <_ sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) ) |
| 100 | 95 99 | eqbrtrrd | |- ( ph -> ( ( 1 / 3 ) ^ m ) <_ sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) ) |
| 101 | 12 18 20 75 100 | ltletrd | |- ( ph -> sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) < sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) ) |
| 102 | 12 101 | gtned | |- ( ph -> sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) =/= sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) ) |
| 103 | 1 2 3 4 5 6 | rpnnen2lem10 | |- ( ( ph /\ ps ) -> sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) = sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) ) |
| 104 | 103 | ex | |- ( ph -> ( ps -> sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) = sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) ) ) |
| 105 | 104 | necon3ad | |- ( ph -> ( sum_ k e. ( ZZ>= ` m ) ( ( F ` A ) ` k ) =/= sum_ k e. ( ZZ>= ` m ) ( ( F ` B ) ` k ) -> -. ps ) ) |
| 106 | 102 105 | mpd | |- ( ph -> -. ps ) |