This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013) (Revised by Mario Carneiro, 30-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rpnnen2.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) | |
| Assertion | rpnnen2lem9 | ⊢ ( 𝑀 ∈ ℕ → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑘 ) = ( 0 + ( ( ( 1 / 3 ) ↑ ( 𝑀 + 1 ) ) / ( 1 − ( 1 / 3 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpnnen2.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) | |
| 2 | eqid | ⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) | |
| 3 | nnz | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℤ ) | |
| 4 | eqidd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑘 ) ) | |
| 5 | eluznn | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑘 ∈ ℕ ) | |
| 6 | difss | ⊢ ( ℕ ∖ { 𝑀 } ) ⊆ ℕ | |
| 7 | 1 | rpnnen2lem2 | ⊢ ( ( ℕ ∖ { 𝑀 } ) ⊆ ℕ → ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) : ℕ ⟶ ℝ ) |
| 8 | 6 7 | ax-mp | ⊢ ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) : ℕ ⟶ ℝ |
| 9 | 8 | ffvelcdmi | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 10 | 9 | recnd | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 11 | 5 10 | syl | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 12 | 1 | rpnnen2lem5 | ⊢ ( ( ( ℕ ∖ { 𝑀 } ) ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → seq 𝑀 ( + , ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ) ∈ dom ⇝ ) |
| 13 | 6 12 | mpan | ⊢ ( 𝑀 ∈ ℕ → seq 𝑀 ( + , ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ) ∈ dom ⇝ ) |
| 14 | 2 3 4 11 13 | isum1p | ⊢ ( 𝑀 ∈ ℕ → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑘 ) = ( ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑀 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑘 ) ) ) |
| 15 | 1 | rpnnen2lem1 | ⊢ ( ( ( ℕ ∖ { 𝑀 } ) ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑀 ) = if ( 𝑀 ∈ ( ℕ ∖ { 𝑀 } ) , ( ( 1 / 3 ) ↑ 𝑀 ) , 0 ) ) |
| 16 | 6 15 | mpan | ⊢ ( 𝑀 ∈ ℕ → ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑀 ) = if ( 𝑀 ∈ ( ℕ ∖ { 𝑀 } ) , ( ( 1 / 3 ) ↑ 𝑀 ) , 0 ) ) |
| 17 | neldifsnd | ⊢ ( 𝑀 ∈ ℕ → ¬ 𝑀 ∈ ( ℕ ∖ { 𝑀 } ) ) | |
| 18 | 17 | iffalsed | ⊢ ( 𝑀 ∈ ℕ → if ( 𝑀 ∈ ( ℕ ∖ { 𝑀 } ) , ( ( 1 / 3 ) ↑ 𝑀 ) , 0 ) = 0 ) |
| 19 | 16 18 | eqtrd | ⊢ ( 𝑀 ∈ ℕ → ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑀 ) = 0 ) |
| 20 | eqid | ⊢ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) = ( ℤ≥ ‘ ( 𝑀 + 1 ) ) | |
| 21 | peano2nn | ⊢ ( 𝑀 ∈ ℕ → ( 𝑀 + 1 ) ∈ ℕ ) | |
| 22 | 21 | nnzd | ⊢ ( 𝑀 ∈ ℕ → ( 𝑀 + 1 ) ∈ ℤ ) |
| 23 | eqidd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑘 ) ) | |
| 24 | eluznn | ⊢ ( ( ( 𝑀 + 1 ) ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑘 ∈ ℕ ) | |
| 25 | 21 24 | sylan | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑘 ∈ ℕ ) |
| 26 | 25 10 | syl | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 27 | 1re | ⊢ 1 ∈ ℝ | |
| 28 | 3nn | ⊢ 3 ∈ ℕ | |
| 29 | nndivre | ⊢ ( ( 1 ∈ ℝ ∧ 3 ∈ ℕ ) → ( 1 / 3 ) ∈ ℝ ) | |
| 30 | 27 28 29 | mp2an | ⊢ ( 1 / 3 ) ∈ ℝ |
| 31 | 30 | recni | ⊢ ( 1 / 3 ) ∈ ℂ |
| 32 | 31 | a1i | ⊢ ( 𝑀 ∈ ℕ → ( 1 / 3 ) ∈ ℂ ) |
| 33 | 0re | ⊢ 0 ∈ ℝ | |
| 34 | 3re | ⊢ 3 ∈ ℝ | |
| 35 | 3pos | ⊢ 0 < 3 | |
| 36 | 34 35 | recgt0ii | ⊢ 0 < ( 1 / 3 ) |
| 37 | 33 30 36 | ltleii | ⊢ 0 ≤ ( 1 / 3 ) |
| 38 | absid | ⊢ ( ( ( 1 / 3 ) ∈ ℝ ∧ 0 ≤ ( 1 / 3 ) ) → ( abs ‘ ( 1 / 3 ) ) = ( 1 / 3 ) ) | |
| 39 | 30 37 38 | mp2an | ⊢ ( abs ‘ ( 1 / 3 ) ) = ( 1 / 3 ) |
| 40 | 1lt3 | ⊢ 1 < 3 | |
| 41 | recgt1 | ⊢ ( ( 3 ∈ ℝ ∧ 0 < 3 ) → ( 1 < 3 ↔ ( 1 / 3 ) < 1 ) ) | |
| 42 | 34 35 41 | mp2an | ⊢ ( 1 < 3 ↔ ( 1 / 3 ) < 1 ) |
| 43 | 40 42 | mpbi | ⊢ ( 1 / 3 ) < 1 |
| 44 | 39 43 | eqbrtri | ⊢ ( abs ‘ ( 1 / 3 ) ) < 1 |
| 45 | 44 | a1i | ⊢ ( 𝑀 ∈ ℕ → ( abs ‘ ( 1 / 3 ) ) < 1 ) |
| 46 | 21 | nnnn0d | ⊢ ( 𝑀 ∈ ℕ → ( 𝑀 + 1 ) ∈ ℕ0 ) |
| 47 | 1 | rpnnen2lem1 | ⊢ ( ( ( ℕ ∖ { 𝑀 } ) ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ ( ℕ ∖ { 𝑀 } ) , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
| 48 | 6 47 | mpan | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ ( ℕ ∖ { 𝑀 } ) , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
| 49 | 25 48 | syl | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ ( ℕ ∖ { 𝑀 } ) , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
| 50 | nnre | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ ) | |
| 51 | 50 | adantr | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑀 ∈ ℝ ) |
| 52 | eluzle | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) → ( 𝑀 + 1 ) ≤ 𝑘 ) | |
| 53 | 52 | adantl | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝑀 + 1 ) ≤ 𝑘 ) |
| 54 | nnltp1le | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ ) → ( 𝑀 < 𝑘 ↔ ( 𝑀 + 1 ) ≤ 𝑘 ) ) | |
| 55 | 25 54 | syldan | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝑀 < 𝑘 ↔ ( 𝑀 + 1 ) ≤ 𝑘 ) ) |
| 56 | 53 55 | mpbird | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑀 < 𝑘 ) |
| 57 | 51 56 | gtned | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑘 ≠ 𝑀 ) |
| 58 | eldifsn | ⊢ ( 𝑘 ∈ ( ℕ ∖ { 𝑀 } ) ↔ ( 𝑘 ∈ ℕ ∧ 𝑘 ≠ 𝑀 ) ) | |
| 59 | 25 57 58 | sylanbrc | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑘 ∈ ( ℕ ∖ { 𝑀 } ) ) |
| 60 | 59 | iftrued | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → if ( 𝑘 ∈ ( ℕ ∖ { 𝑀 } ) , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) = ( ( 1 / 3 ) ↑ 𝑘 ) ) |
| 61 | 49 60 | eqtrd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑘 ) = ( ( 1 / 3 ) ↑ 𝑘 ) ) |
| 62 | 32 45 46 61 | geolim2 | ⊢ ( 𝑀 ∈ ℕ → seq ( 𝑀 + 1 ) ( + , ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ) ⇝ ( ( ( 1 / 3 ) ↑ ( 𝑀 + 1 ) ) / ( 1 − ( 1 / 3 ) ) ) ) |
| 63 | 20 22 23 26 62 | isumclim | ⊢ ( 𝑀 ∈ ℕ → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑘 ) = ( ( ( 1 / 3 ) ↑ ( 𝑀 + 1 ) ) / ( 1 − ( 1 / 3 ) ) ) ) |
| 64 | 19 63 | oveq12d | ⊢ ( 𝑀 ∈ ℕ → ( ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑀 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑘 ) ) = ( 0 + ( ( ( 1 / 3 ) ↑ ( 𝑀 + 1 ) ) / ( 1 − ( 1 / 3 ) ) ) ) ) |
| 65 | 14 64 | eqtrd | ⊢ ( 𝑀 ∈ ℕ → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( ( 𝐹 ‘ ( ℕ ∖ { 𝑀 } ) ) ‘ 𝑘 ) = ( 0 + ( ( ( 1 / 3 ) ↑ ( 𝑀 + 1 ) ) / ( 1 − ( 1 / 3 ) ) ) ) ) |