This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change the index set of a sum by adding zeroes. (Contributed by Mario Carneiro, 15-Jul-2013) (Revised by Mario Carneiro, 20-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sumss2 | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ∈ ℂ ) ∧ ( 𝐵 ⊆ ( ℤ≥ ‘ 𝑀 ) ∨ 𝐵 ∈ Fin ) ) → Σ 𝑘 ∈ 𝐴 𝐶 = Σ 𝑘 ∈ 𝐵 if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ∈ ℂ ) ∧ 𝐵 ⊆ ( ℤ≥ ‘ 𝑀 ) ) → 𝐴 ⊆ 𝐵 ) | |
| 2 | iftrue | ⊢ ( 𝑚 ∈ 𝐴 → if ( 𝑚 ∈ 𝐴 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 0 ) = ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) | |
| 3 | 2 | adantl | ⊢ ( ( ∀ 𝑘 ∈ 𝐴 𝐶 ∈ ℂ ∧ 𝑚 ∈ 𝐴 ) → if ( 𝑚 ∈ 𝐴 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 0 ) = ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) |
| 4 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑚 / 𝑘 ⦌ 𝐶 | |
| 5 | 4 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ∈ ℂ |
| 6 | csbeq1a | ⊢ ( 𝑘 = 𝑚 → 𝐶 = ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) | |
| 7 | 6 | eleq1d | ⊢ ( 𝑘 = 𝑚 → ( 𝐶 ∈ ℂ ↔ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ∈ ℂ ) ) |
| 8 | 5 7 | rspc | ⊢ ( 𝑚 ∈ 𝐴 → ( ∀ 𝑘 ∈ 𝐴 𝐶 ∈ ℂ → ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ∈ ℂ ) ) |
| 9 | 8 | impcom | ⊢ ( ( ∀ 𝑘 ∈ 𝐴 𝐶 ∈ ℂ ∧ 𝑚 ∈ 𝐴 ) → ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ∈ ℂ ) |
| 10 | 3 9 | eqeltrd | ⊢ ( ( ∀ 𝑘 ∈ 𝐴 𝐶 ∈ ℂ ∧ 𝑚 ∈ 𝐴 ) → if ( 𝑚 ∈ 𝐴 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 0 ) ∈ ℂ ) |
| 11 | 10 | ad4ant24 | ⊢ ( ( ( ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ∈ ℂ ) ∧ 𝐵 ⊆ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑚 ∈ 𝐴 ) → if ( 𝑚 ∈ 𝐴 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 0 ) ∈ ℂ ) |
| 12 | eldifn | ⊢ ( 𝑚 ∈ ( 𝐵 ∖ 𝐴 ) → ¬ 𝑚 ∈ 𝐴 ) | |
| 13 | 12 | iffalsed | ⊢ ( 𝑚 ∈ ( 𝐵 ∖ 𝐴 ) → if ( 𝑚 ∈ 𝐴 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 0 ) = 0 ) |
| 14 | 13 | adantl | ⊢ ( ( ( ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ∈ ℂ ) ∧ 𝐵 ⊆ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑚 ∈ ( 𝐵 ∖ 𝐴 ) ) → if ( 𝑚 ∈ 𝐴 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 0 ) = 0 ) |
| 15 | simpr | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ∈ ℂ ) ∧ 𝐵 ⊆ ( ℤ≥ ‘ 𝑀 ) ) → 𝐵 ⊆ ( ℤ≥ ‘ 𝑀 ) ) | |
| 16 | 1 11 14 15 | sumss | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ∈ ℂ ) ∧ 𝐵 ⊆ ( ℤ≥ ‘ 𝑀 ) ) → Σ 𝑚 ∈ 𝐴 if ( 𝑚 ∈ 𝐴 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 0 ) = Σ 𝑚 ∈ 𝐵 if ( 𝑚 ∈ 𝐴 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 0 ) ) |
| 17 | simpll | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ∈ ℂ ) ∧ 𝐵 ∈ Fin ) → 𝐴 ⊆ 𝐵 ) | |
| 18 | 10 | ad4ant24 | ⊢ ( ( ( ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ∈ ℂ ) ∧ 𝐵 ∈ Fin ) ∧ 𝑚 ∈ 𝐴 ) → if ( 𝑚 ∈ 𝐴 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 0 ) ∈ ℂ ) |
| 19 | 13 | adantl | ⊢ ( ( ( ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ∈ ℂ ) ∧ 𝐵 ∈ Fin ) ∧ 𝑚 ∈ ( 𝐵 ∖ 𝐴 ) ) → if ( 𝑚 ∈ 𝐴 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 0 ) = 0 ) |
| 20 | simpr | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ∈ ℂ ) ∧ 𝐵 ∈ Fin ) → 𝐵 ∈ Fin ) | |
| 21 | 17 18 19 20 | fsumss | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ∈ ℂ ) ∧ 𝐵 ∈ Fin ) → Σ 𝑚 ∈ 𝐴 if ( 𝑚 ∈ 𝐴 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 0 ) = Σ 𝑚 ∈ 𝐵 if ( 𝑚 ∈ 𝐴 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 0 ) ) |
| 22 | 16 21 | jaodan | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ∈ ℂ ) ∧ ( 𝐵 ⊆ ( ℤ≥ ‘ 𝑀 ) ∨ 𝐵 ∈ Fin ) ) → Σ 𝑚 ∈ 𝐴 if ( 𝑚 ∈ 𝐴 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 0 ) = Σ 𝑚 ∈ 𝐵 if ( 𝑚 ∈ 𝐴 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 0 ) ) |
| 23 | iftrue | ⊢ ( 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) = 𝐶 ) | |
| 24 | 23 | sumeq2i | ⊢ Σ 𝑘 ∈ 𝐴 if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) = Σ 𝑘 ∈ 𝐴 𝐶 |
| 25 | eleq1w | ⊢ ( 𝑘 = 𝑚 → ( 𝑘 ∈ 𝐴 ↔ 𝑚 ∈ 𝐴 ) ) | |
| 26 | 25 6 | ifbieq1d | ⊢ ( 𝑘 = 𝑚 → if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) = if ( 𝑚 ∈ 𝐴 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 0 ) ) |
| 27 | nfcv | ⊢ Ⅎ 𝑚 if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) | |
| 28 | nfv | ⊢ Ⅎ 𝑘 𝑚 ∈ 𝐴 | |
| 29 | nfcv | ⊢ Ⅎ 𝑘 0 | |
| 30 | 28 4 29 | nfif | ⊢ Ⅎ 𝑘 if ( 𝑚 ∈ 𝐴 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 0 ) |
| 31 | 26 27 30 | cbvsum | ⊢ Σ 𝑘 ∈ 𝐴 if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) = Σ 𝑚 ∈ 𝐴 if ( 𝑚 ∈ 𝐴 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 0 ) |
| 32 | 24 31 | eqtr3i | ⊢ Σ 𝑘 ∈ 𝐴 𝐶 = Σ 𝑚 ∈ 𝐴 if ( 𝑚 ∈ 𝐴 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 0 ) |
| 33 | 26 27 30 | cbvsum | ⊢ Σ 𝑘 ∈ 𝐵 if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) = Σ 𝑚 ∈ 𝐵 if ( 𝑚 ∈ 𝐴 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 0 ) |
| 34 | 22 32 33 | 3eqtr4g | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ∈ ℂ ) ∧ ( 𝐵 ⊆ ( ℤ≥ ‘ 𝑀 ) ∨ 𝐵 ∈ Fin ) ) → Σ 𝑘 ∈ 𝐴 𝐶 = Σ 𝑘 ∈ 𝐵 if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) |