This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013) (Revised by Mario Carneiro, 30-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rpnnen2.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) | |
| rpnnen2.2 | ⊢ ( 𝜑 → 𝐴 ⊆ ℕ ) | ||
| rpnnen2.3 | ⊢ ( 𝜑 → 𝐵 ⊆ ℕ ) | ||
| rpnnen2.4 | ⊢ ( 𝜑 → 𝑚 ∈ ( 𝐴 ∖ 𝐵 ) ) | ||
| rpnnen2.5 | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝐴 ↔ 𝑛 ∈ 𝐵 ) ) ) | ||
| rpnnen2.6 | ⊢ ( 𝜓 ↔ Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) | ||
| Assertion | rpnnen2lem10 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpnnen2.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) | |
| 2 | rpnnen2.2 | ⊢ ( 𝜑 → 𝐴 ⊆ ℕ ) | |
| 3 | rpnnen2.3 | ⊢ ( 𝜑 → 𝐵 ⊆ ℕ ) | |
| 4 | rpnnen2.4 | ⊢ ( 𝜑 → 𝑚 ∈ ( 𝐴 ∖ 𝐵 ) ) | |
| 5 | rpnnen2.5 | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝐴 ↔ 𝑛 ∈ 𝐵 ) ) ) | |
| 6 | rpnnen2.6 | ⊢ ( 𝜓 ↔ Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) | |
| 7 | simpr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜓 ) | |
| 8 | 7 6 | sylib | ⊢ ( ( 𝜑 ∧ 𝜓 ) → Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) |
| 9 | eldifi | ⊢ ( 𝑚 ∈ ( 𝐴 ∖ 𝐵 ) → 𝑚 ∈ 𝐴 ) | |
| 10 | ssel2 | ⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑚 ∈ 𝐴 ) → 𝑚 ∈ ℕ ) | |
| 11 | 9 10 | sylan2 | ⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑚 ∈ ( 𝐴 ∖ 𝐵 ) ) → 𝑚 ∈ ℕ ) |
| 12 | 2 4 11 | syl2anc | ⊢ ( 𝜑 → 𝑚 ∈ ℕ ) |
| 13 | 1 | rpnnen2lem8 | ⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = ( Σ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) ) |
| 14 | 2 12 13 | syl2anc | ⊢ ( 𝜑 → Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = ( Σ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) ) |
| 15 | 1z | ⊢ 1 ∈ ℤ | |
| 16 | nnz | ⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℤ ) | |
| 17 | elfzm11 | ⊢ ( ( 1 ∈ ℤ ∧ 𝑚 ∈ ℤ ) → ( 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ↔ ( 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ∧ 𝑘 < 𝑚 ) ) ) | |
| 18 | 15 16 17 | sylancr | ⊢ ( 𝑚 ∈ ℕ → ( 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ↔ ( 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ∧ 𝑘 < 𝑚 ) ) ) |
| 19 | 18 | biimpa | ⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ) → ( 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ∧ 𝑘 < 𝑚 ) ) |
| 20 | 12 19 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ) → ( 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ∧ 𝑘 < 𝑚 ) ) |
| 21 | 20 | simp3d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ) → 𝑘 < 𝑚 ) |
| 22 | elfznn | ⊢ ( 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) → 𝑘 ∈ ℕ ) | |
| 23 | breq1 | ⊢ ( 𝑛 = 𝑘 → ( 𝑛 < 𝑚 ↔ 𝑘 < 𝑚 ) ) | |
| 24 | eleq1w | ⊢ ( 𝑛 = 𝑘 → ( 𝑛 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴 ) ) | |
| 25 | eleq1w | ⊢ ( 𝑛 = 𝑘 → ( 𝑛 ∈ 𝐵 ↔ 𝑘 ∈ 𝐵 ) ) | |
| 26 | 24 25 | bibi12d | ⊢ ( 𝑛 = 𝑘 → ( ( 𝑛 ∈ 𝐴 ↔ 𝑛 ∈ 𝐵 ) ↔ ( 𝑘 ∈ 𝐴 ↔ 𝑘 ∈ 𝐵 ) ) ) |
| 27 | 23 26 | imbi12d | ⊢ ( 𝑛 = 𝑘 → ( ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝐴 ↔ 𝑛 ∈ 𝐵 ) ) ↔ ( 𝑘 < 𝑚 → ( 𝑘 ∈ 𝐴 ↔ 𝑘 ∈ 𝐵 ) ) ) ) |
| 28 | 27 | rspccva | ⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑚 → ( 𝑛 ∈ 𝐴 ↔ 𝑛 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑘 < 𝑚 → ( 𝑘 ∈ 𝐴 ↔ 𝑘 ∈ 𝐵 ) ) ) |
| 29 | 5 22 28 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ) → ( 𝑘 < 𝑚 → ( 𝑘 ∈ 𝐴 ↔ 𝑘 ∈ 𝐵 ) ) ) |
| 30 | 21 29 | mpd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ) → ( 𝑘 ∈ 𝐴 ↔ 𝑘 ∈ 𝐵 ) ) |
| 31 | 30 | ifbid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ) → if ( 𝑘 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) = if ( 𝑘 ∈ 𝐵 , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
| 32 | 1 | rpnnen2lem1 | ⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
| 33 | 2 22 32 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
| 34 | 1 | rpnnen2lem1 | ⊢ ( ( 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐵 , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
| 35 | 3 22 34 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ) → ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐵 , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
| 36 | 31 33 35 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) |
| 37 | 36 | sumeq2dv | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) |
| 38 | 37 | oveq1d | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) = ( Σ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) ) |
| 39 | 14 38 | eqtrd | ⊢ ( 𝜑 → Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = ( Σ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) ) |
| 40 | 39 | adantr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = ( Σ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) ) |
| 41 | 1 | rpnnen2lem8 | ⊢ ( ( 𝐵 ⊆ ℕ ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) = ( Σ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) ) |
| 42 | 3 12 41 | syl2anc | ⊢ ( 𝜑 → Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) = ( Σ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) ) |
| 43 | 42 | adantr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) = ( Σ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) ) |
| 44 | 8 40 43 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( Σ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) = ( Σ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) ) |
| 45 | 1 | rpnnen2lem6 | ⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ∈ ℝ ) |
| 46 | 2 12 45 | syl2anc | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ∈ ℝ ) |
| 47 | 1 | rpnnen2lem6 | ⊢ ( ( 𝐵 ⊆ ℕ ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ∈ ℝ ) |
| 48 | 3 12 47 | syl2anc | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ∈ ℝ ) |
| 49 | fzfid | ⊢ ( 𝜑 → ( 1 ... ( 𝑚 − 1 ) ) ∈ Fin ) | |
| 50 | 1 | rpnnen2lem2 | ⊢ ( 𝐵 ⊆ ℕ → ( 𝐹 ‘ 𝐵 ) : ℕ ⟶ ℝ ) |
| 51 | 3 50 | syl | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) : ℕ ⟶ ℝ ) |
| 52 | ffvelcdm | ⊢ ( ( ( 𝐹 ‘ 𝐵 ) : ℕ ⟶ ℝ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ∈ ℝ ) | |
| 53 | 51 22 52 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ) → ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ∈ ℝ ) |
| 54 | 49 53 | fsumrecl | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ∈ ℝ ) |
| 55 | readdcan | ⊢ ( ( Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ∈ ℝ ∧ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ∈ ℝ ∧ Σ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ∈ ℝ ) → ( ( Σ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) = ( Σ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) ↔ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) ) | |
| 56 | 46 48 54 55 | syl3anc | ⊢ ( 𝜑 → ( ( Σ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) = ( Σ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) ↔ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) ) |
| 57 | 56 | adantr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( Σ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) = ( Σ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) ↔ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) ) |
| 58 | 44 57 | mpbid | ⊢ ( ( 𝜑 ∧ 𝜓 ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) |