This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Specialization of the Extreme Value Theorem to a closed interval of RR . (Contributed by Mario Carneiro, 12-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evthicc.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| evthicc.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| evthicc.3 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | ||
| evthicc.4 | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | ||
| Assertion | evthicc | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ∧ ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑤 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evthicc.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | evthicc.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | evthicc.3 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | |
| 4 | evthicc.4 | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | |
| 5 | eqid | ⊢ ∪ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) = ∪ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) | |
| 6 | eqid | ⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) | |
| 7 | eqid | ⊢ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) | |
| 8 | 6 7 | icccmp | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Comp ) |
| 9 | 1 2 8 | syl2anc | ⊢ ( 𝜑 → ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Comp ) |
| 10 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 11 | 1 2 10 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 12 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 13 | 11 12 | sstrdi | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) |
| 14 | eqid | ⊢ ( ( abs ∘ − ) ↾ ( ( 𝐴 [,] 𝐵 ) × ( 𝐴 [,] 𝐵 ) ) ) = ( ( abs ∘ − ) ↾ ( ( 𝐴 [,] 𝐵 ) × ( 𝐴 [,] 𝐵 ) ) ) | |
| 15 | eqid | ⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) | |
| 16 | eqid | ⊢ ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ( 𝐴 [,] 𝐵 ) × ( 𝐴 [,] 𝐵 ) ) ) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ( 𝐴 [,] 𝐵 ) × ( 𝐴 [,] 𝐵 ) ) ) ) | |
| 17 | eqid | ⊢ ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) | |
| 18 | 15 17 | tgioo | ⊢ ( topGen ‘ ran (,) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) |
| 19 | 14 15 16 18 | cncfmet | ⊢ ( ( ( 𝐴 [,] 𝐵 ) ⊆ ℂ ∧ ℝ ⊆ ℂ ) → ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) = ( ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ( 𝐴 [,] 𝐵 ) × ( 𝐴 [,] 𝐵 ) ) ) ) Cn ( topGen ‘ ran (,) ) ) ) |
| 20 | 13 12 19 | sylancl | ⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) = ( ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ( 𝐴 [,] 𝐵 ) × ( 𝐴 [,] 𝐵 ) ) ) ) Cn ( topGen ‘ ran (,) ) ) ) |
| 21 | 6 16 | resubmet | ⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ → ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ( 𝐴 [,] 𝐵 ) × ( 𝐴 [,] 𝐵 ) ) ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 22 | 11 21 | syl | ⊢ ( 𝜑 → ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ( 𝐴 [,] 𝐵 ) × ( 𝐴 [,] 𝐵 ) ) ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 23 | 22 | oveq1d | ⊢ ( 𝜑 → ( ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ( 𝐴 [,] 𝐵 ) × ( 𝐴 [,] 𝐵 ) ) ) ) Cn ( topGen ‘ ran (,) ) ) = ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( topGen ‘ ran (,) ) ) ) |
| 24 | 20 23 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) = ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( topGen ‘ ran (,) ) ) ) |
| 25 | 4 24 | eleqtrd | ⊢ ( 𝜑 → 𝐹 ∈ ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( topGen ‘ ran (,) ) ) ) |
| 26 | retop | ⊢ ( topGen ‘ ran (,) ) ∈ Top | |
| 27 | uniretop | ⊢ ℝ = ∪ ( topGen ‘ ran (,) ) | |
| 28 | 27 | restuni | ⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) → ( 𝐴 [,] 𝐵 ) = ∪ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 29 | 26 11 28 | sylancr | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) = ∪ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 30 | 1 | rexrd | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 31 | 2 | rexrd | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 32 | lbicc2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 33 | 30 31 3 32 | syl3anc | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 34 | 33 | ne0d | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ≠ ∅ ) |
| 35 | 29 34 | eqnetrrd | ⊢ ( 𝜑 → ∪ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ) |
| 36 | 5 6 9 25 35 | evth | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ∪ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ∀ 𝑦 ∈ ∪ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 37 | 29 | raleqdv | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ ∪ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 38 | 29 37 | rexeqbidv | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ ∪ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ∀ 𝑦 ∈ ∪ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 39 | 36 38 | mpbird | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 40 | 5 6 9 25 35 | evth2 | ⊢ ( 𝜑 → ∃ 𝑧 ∈ ∪ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ∀ 𝑤 ∈ ∪ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑤 ) ) |
| 41 | 29 | raleqdv | ⊢ ( 𝜑 → ( ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑤 ) ↔ ∀ 𝑤 ∈ ∪ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑤 ) ) ) |
| 42 | 29 41 | rexeqbidv | ⊢ ( 𝜑 → ( ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑤 ) ↔ ∃ 𝑧 ∈ ∪ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ∀ 𝑤 ∈ ∪ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑤 ) ) ) |
| 43 | 40 42 | mpbird | ⊢ ( 𝜑 → ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑤 ) ) |
| 44 | 39 43 | jca | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ∧ ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑤 ) ) ) |