This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rolle . (Contributed by Mario Carneiro, 1-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rolle.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| rolle.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| rolle.lt | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | ||
| rolle.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | ||
| rolle.d | ⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) | ||
| rolle.r | ⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑈 ) ) | ||
| rolle.u | ⊢ ( 𝜑 → 𝑈 ∈ ( 𝐴 [,] 𝐵 ) ) | ||
| rolle.n | ⊢ ( 𝜑 → ¬ 𝑈 ∈ { 𝐴 , 𝐵 } ) | ||
| Assertion | rollelem | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rolle.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | rolle.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | rolle.lt | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | |
| 4 | rolle.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | |
| 5 | rolle.d | ⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) | |
| 6 | rolle.r | ⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑈 ) ) | |
| 7 | rolle.u | ⊢ ( 𝜑 → 𝑈 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 8 | rolle.n | ⊢ ( 𝜑 → ¬ 𝑈 ∈ { 𝐴 , 𝐵 } ) | |
| 9 | 1 | rexrd | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 10 | 2 | rexrd | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 11 | 1 2 3 | ltled | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 12 | prunioo | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) | |
| 13 | 9 10 11 12 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) |
| 14 | 7 13 | eleqtrrd | ⊢ ( 𝜑 → 𝑈 ∈ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) ) |
| 15 | elun | ⊢ ( 𝑈 ∈ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) ↔ ( 𝑈 ∈ ( 𝐴 (,) 𝐵 ) ∨ 𝑈 ∈ { 𝐴 , 𝐵 } ) ) | |
| 16 | 14 15 | sylib | ⊢ ( 𝜑 → ( 𝑈 ∈ ( 𝐴 (,) 𝐵 ) ∨ 𝑈 ∈ { 𝐴 , 𝐵 } ) ) |
| 17 | 16 | ord | ⊢ ( 𝜑 → ( ¬ 𝑈 ∈ ( 𝐴 (,) 𝐵 ) → 𝑈 ∈ { 𝐴 , 𝐵 } ) ) |
| 18 | 8 17 | mt3d | ⊢ ( 𝜑 → 𝑈 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 19 | cncff | ⊢ ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) | |
| 20 | 4 19 | syl | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 21 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 22 | 1 2 21 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 23 | ioossicc | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) | |
| 24 | 23 | a1i | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 25 | 18 5 | eleqtrrd | ⊢ ( 𝜑 → 𝑈 ∈ dom ( ℝ D 𝐹 ) ) |
| 26 | ssralv | ⊢ ( ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) → ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑈 ) → ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑈 ) ) ) | |
| 27 | 24 6 26 | sylc | ⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑈 ) ) |
| 28 | 20 22 18 24 25 27 | dvferm | ⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ‘ 𝑈 ) = 0 ) |
| 29 | fveqeq2 | ⊢ ( 𝑥 = 𝑈 → ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ↔ ( ( ℝ D 𝐹 ) ‘ 𝑈 ) = 0 ) ) | |
| 30 | 29 | rspcev | ⊢ ( ( 𝑈 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑈 ) = 0 ) → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) |
| 31 | 18 28 30 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) |