This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition for a filter to be an image filter for a given function. (Contributed by Jeff Hankins, 14-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rnelfm | ⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐿 ∈ ran ( 𝑋 FilMap 𝐹 ) ↔ ran 𝐹 ∈ 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | filtop | ⊢ ( 𝐿 ∈ ( Fil ‘ 𝑋 ) → 𝑋 ∈ 𝐿 ) | |
| 2 | 1 | 3ad2ant2 | ⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → 𝑋 ∈ 𝐿 ) |
| 3 | simp1 | ⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → 𝑌 ∈ 𝐴 ) | |
| 4 | simp3 | ⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → 𝐹 : 𝑌 ⟶ 𝑋 ) | |
| 5 | fmf | ⊢ ( ( 𝑋 ∈ 𝐿 ∧ 𝑌 ∈ 𝐴 ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑋 FilMap 𝐹 ) : ( fBas ‘ 𝑌 ) ⟶ ( Fil ‘ 𝑋 ) ) | |
| 6 | 2 3 4 5 | syl3anc | ⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑋 FilMap 𝐹 ) : ( fBas ‘ 𝑌 ) ⟶ ( Fil ‘ 𝑋 ) ) |
| 7 | 6 | ffnd | ⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑋 FilMap 𝐹 ) Fn ( fBas ‘ 𝑌 ) ) |
| 8 | fvelrnb | ⊢ ( ( 𝑋 FilMap 𝐹 ) Fn ( fBas ‘ 𝑌 ) → ( 𝐿 ∈ ran ( 𝑋 FilMap 𝐹 ) ↔ ∃ 𝑏 ∈ ( fBas ‘ 𝑌 ) ( ( 𝑋 FilMap 𝐹 ) ‘ 𝑏 ) = 𝐿 ) ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐿 ∈ ran ( 𝑋 FilMap 𝐹 ) ↔ ∃ 𝑏 ∈ ( fBas ‘ 𝑌 ) ( ( 𝑋 FilMap 𝐹 ) ‘ 𝑏 ) = 𝐿 ) ) |
| 10 | ffn | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → 𝐹 Fn 𝑌 ) | |
| 11 | dffn4 | ⊢ ( 𝐹 Fn 𝑌 ↔ 𝐹 : 𝑌 –onto→ ran 𝐹 ) | |
| 12 | 10 11 | sylib | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → 𝐹 : 𝑌 –onto→ ran 𝐹 ) |
| 13 | foima | ⊢ ( 𝐹 : 𝑌 –onto→ ran 𝐹 → ( 𝐹 “ 𝑌 ) = ran 𝐹 ) | |
| 14 | 12 13 | syl | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → ( 𝐹 “ 𝑌 ) = ran 𝐹 ) |
| 15 | 14 | ad2antlr | ⊢ ( ( ( 𝑋 ∈ 𝐿 ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑏 ∈ ( fBas ‘ 𝑌 ) ) → ( 𝐹 “ 𝑌 ) = ran 𝐹 ) |
| 16 | simpll | ⊢ ( ( ( 𝑋 ∈ 𝐿 ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑏 ∈ ( fBas ‘ 𝑌 ) ) → 𝑋 ∈ 𝐿 ) | |
| 17 | simpr | ⊢ ( ( ( 𝑋 ∈ 𝐿 ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑏 ∈ ( fBas ‘ 𝑌 ) ) → 𝑏 ∈ ( fBas ‘ 𝑌 ) ) | |
| 18 | simplr | ⊢ ( ( ( 𝑋 ∈ 𝐿 ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑏 ∈ ( fBas ‘ 𝑌 ) ) → 𝐹 : 𝑌 ⟶ 𝑋 ) | |
| 19 | fgcl | ⊢ ( 𝑏 ∈ ( fBas ‘ 𝑌 ) → ( 𝑌 filGen 𝑏 ) ∈ ( Fil ‘ 𝑌 ) ) | |
| 20 | filtop | ⊢ ( ( 𝑌 filGen 𝑏 ) ∈ ( Fil ‘ 𝑌 ) → 𝑌 ∈ ( 𝑌 filGen 𝑏 ) ) | |
| 21 | 19 20 | syl | ⊢ ( 𝑏 ∈ ( fBas ‘ 𝑌 ) → 𝑌 ∈ ( 𝑌 filGen 𝑏 ) ) |
| 22 | 21 | adantl | ⊢ ( ( ( 𝑋 ∈ 𝐿 ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑏 ∈ ( fBas ‘ 𝑌 ) ) → 𝑌 ∈ ( 𝑌 filGen 𝑏 ) ) |
| 23 | eqid | ⊢ ( 𝑌 filGen 𝑏 ) = ( 𝑌 filGen 𝑏 ) | |
| 24 | 23 | imaelfm | ⊢ ( ( ( 𝑋 ∈ 𝐿 ∧ 𝑏 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑌 ∈ ( 𝑌 filGen 𝑏 ) ) → ( 𝐹 “ 𝑌 ) ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝑏 ) ) |
| 25 | 16 17 18 22 24 | syl31anc | ⊢ ( ( ( 𝑋 ∈ 𝐿 ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑏 ∈ ( fBas ‘ 𝑌 ) ) → ( 𝐹 “ 𝑌 ) ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝑏 ) ) |
| 26 | 15 25 | eqeltrrd | ⊢ ( ( ( 𝑋 ∈ 𝐿 ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑏 ∈ ( fBas ‘ 𝑌 ) ) → ran 𝐹 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝑏 ) ) |
| 27 | eleq2 | ⊢ ( ( ( 𝑋 FilMap 𝐹 ) ‘ 𝑏 ) = 𝐿 → ( ran 𝐹 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝑏 ) ↔ ran 𝐹 ∈ 𝐿 ) ) | |
| 28 | 26 27 | syl5ibcom | ⊢ ( ( ( 𝑋 ∈ 𝐿 ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑏 ∈ ( fBas ‘ 𝑌 ) ) → ( ( ( 𝑋 FilMap 𝐹 ) ‘ 𝑏 ) = 𝐿 → ran 𝐹 ∈ 𝐿 ) ) |
| 29 | 28 | ex | ⊢ ( ( 𝑋 ∈ 𝐿 ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑏 ∈ ( fBas ‘ 𝑌 ) → ( ( ( 𝑋 FilMap 𝐹 ) ‘ 𝑏 ) = 𝐿 → ran 𝐹 ∈ 𝐿 ) ) ) |
| 30 | 1 29 | sylan | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑏 ∈ ( fBas ‘ 𝑌 ) → ( ( ( 𝑋 FilMap 𝐹 ) ‘ 𝑏 ) = 𝐿 → ran 𝐹 ∈ 𝐿 ) ) ) |
| 31 | 30 | 3adant1 | ⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑏 ∈ ( fBas ‘ 𝑌 ) → ( ( ( 𝑋 FilMap 𝐹 ) ‘ 𝑏 ) = 𝐿 → ran 𝐹 ∈ 𝐿 ) ) ) |
| 32 | 31 | rexlimdv | ⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ∃ 𝑏 ∈ ( fBas ‘ 𝑌 ) ( ( 𝑋 FilMap 𝐹 ) ‘ 𝑏 ) = 𝐿 → ran 𝐹 ∈ 𝐿 ) ) |
| 33 | 9 32 | sylbid | ⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐿 ∈ ran ( 𝑋 FilMap 𝐹 ) → ran 𝐹 ∈ 𝐿 ) ) |
| 34 | simpl2 | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → 𝐿 ∈ ( Fil ‘ 𝑋 ) ) | |
| 35 | filelss | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑡 ∈ 𝐿 ) → 𝑡 ⊆ 𝑋 ) | |
| 36 | 35 | ex | ⊢ ( 𝐿 ∈ ( Fil ‘ 𝑋 ) → ( 𝑡 ∈ 𝐿 → 𝑡 ⊆ 𝑋 ) ) |
| 37 | 34 36 | syl | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( 𝑡 ∈ 𝐿 → 𝑡 ⊆ 𝑋 ) ) |
| 38 | simpr | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑡 ∈ 𝐿 ) → 𝑡 ∈ 𝐿 ) | |
| 39 | eqidd | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑡 ∈ 𝐿 ) → ( ◡ 𝐹 “ 𝑡 ) = ( ◡ 𝐹 “ 𝑡 ) ) | |
| 40 | imaeq2 | ⊢ ( 𝑥 = 𝑡 → ( ◡ 𝐹 “ 𝑥 ) = ( ◡ 𝐹 “ 𝑡 ) ) | |
| 41 | 40 | rspceeqv | ⊢ ( ( 𝑡 ∈ 𝐿 ∧ ( ◡ 𝐹 “ 𝑡 ) = ( ◡ 𝐹 “ 𝑡 ) ) → ∃ 𝑥 ∈ 𝐿 ( ◡ 𝐹 “ 𝑡 ) = ( ◡ 𝐹 “ 𝑥 ) ) |
| 42 | 38 39 41 | syl2anc | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑡 ∈ 𝐿 ) → ∃ 𝑥 ∈ 𝐿 ( ◡ 𝐹 “ 𝑡 ) = ( ◡ 𝐹 “ 𝑥 ) ) |
| 43 | simpl1 | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → 𝑌 ∈ 𝐴 ) | |
| 44 | cnvimass | ⊢ ( ◡ 𝐹 “ 𝑡 ) ⊆ dom 𝐹 | |
| 45 | fdm | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → dom 𝐹 = 𝑌 ) | |
| 46 | 44 45 | sseqtrid | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → ( ◡ 𝐹 “ 𝑡 ) ⊆ 𝑌 ) |
| 47 | 46 | 3ad2ant3 | ⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ◡ 𝐹 “ 𝑡 ) ⊆ 𝑌 ) |
| 48 | 47 | adantr | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( ◡ 𝐹 “ 𝑡 ) ⊆ 𝑌 ) |
| 49 | 43 48 | ssexd | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( ◡ 𝐹 “ 𝑡 ) ∈ V ) |
| 50 | eqid | ⊢ ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) = ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) | |
| 51 | 50 | elrnmpt | ⊢ ( ( ◡ 𝐹 “ 𝑡 ) ∈ V → ( ( ◡ 𝐹 “ 𝑡 ) ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 ( ◡ 𝐹 “ 𝑡 ) = ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 52 | 49 51 | syl | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( ( ◡ 𝐹 “ 𝑡 ) ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 ( ◡ 𝐹 “ 𝑡 ) = ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 53 | 52 | adantr | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑡 ∈ 𝐿 ) → ( ( ◡ 𝐹 “ 𝑡 ) ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 ( ◡ 𝐹 “ 𝑡 ) = ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 54 | 42 53 | mpbird | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑡 ∈ 𝐿 ) → ( ◡ 𝐹 “ 𝑡 ) ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 55 | ssid | ⊢ ( ◡ 𝐹 “ 𝑡 ) ⊆ ( ◡ 𝐹 “ 𝑡 ) | |
| 56 | ffun | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → Fun 𝐹 ) | |
| 57 | 56 | 3ad2ant3 | ⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → Fun 𝐹 ) |
| 58 | 57 | ad2antrr | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑡 ∈ 𝐿 ) → Fun 𝐹 ) |
| 59 | funimass3 | ⊢ ( ( Fun 𝐹 ∧ ( ◡ 𝐹 “ 𝑡 ) ⊆ dom 𝐹 ) → ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑡 ) ) ⊆ 𝑡 ↔ ( ◡ 𝐹 “ 𝑡 ) ⊆ ( ◡ 𝐹 “ 𝑡 ) ) ) | |
| 60 | 58 44 59 | sylancl | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑡 ∈ 𝐿 ) → ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑡 ) ) ⊆ 𝑡 ↔ ( ◡ 𝐹 “ 𝑡 ) ⊆ ( ◡ 𝐹 “ 𝑡 ) ) ) |
| 61 | 55 60 | mpbiri | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑡 ∈ 𝐿 ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑡 ) ) ⊆ 𝑡 ) |
| 62 | imaeq2 | ⊢ ( 𝑠 = ( ◡ 𝐹 “ 𝑡 ) → ( 𝐹 “ 𝑠 ) = ( 𝐹 “ ( ◡ 𝐹 “ 𝑡 ) ) ) | |
| 63 | 62 | sseq1d | ⊢ ( 𝑠 = ( ◡ 𝐹 “ 𝑡 ) → ( ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ↔ ( 𝐹 “ ( ◡ 𝐹 “ 𝑡 ) ) ⊆ 𝑡 ) ) |
| 64 | 63 | rspcev | ⊢ ( ( ( ◡ 𝐹 “ 𝑡 ) ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∧ ( 𝐹 “ ( ◡ 𝐹 “ 𝑡 ) ) ⊆ 𝑡 ) → ∃ 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ) |
| 65 | 54 61 64 | syl2anc | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑡 ∈ 𝐿 ) → ∃ 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ) |
| 66 | 65 | ex | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( 𝑡 ∈ 𝐿 → ∃ 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ) ) |
| 67 | 37 66 | jcad | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( 𝑡 ∈ 𝐿 → ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ) ) ) |
| 68 | 34 | adantr | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( ( 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∧ ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ) ∧ 𝑡 ⊆ 𝑋 ) ) → 𝐿 ∈ ( Fil ‘ 𝑋 ) ) |
| 69 | 50 | elrnmpt | ⊢ ( 𝑠 ∈ V → ( 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 𝑠 = ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 70 | 69 | elv | ⊢ ( 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 𝑠 = ( ◡ 𝐹 “ 𝑥 ) ) |
| 71 | ssid | ⊢ ( ◡ 𝐹 “ 𝑥 ) ⊆ ( ◡ 𝐹 “ 𝑥 ) | |
| 72 | 57 | ad3antrrr | ⊢ ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → Fun 𝐹 ) |
| 73 | cnvimass | ⊢ ( ◡ 𝐹 “ 𝑥 ) ⊆ dom 𝐹 | |
| 74 | funimass3 | ⊢ ( ( Fun 𝐹 ∧ ( ◡ 𝐹 “ 𝑥 ) ⊆ dom 𝐹 ) → ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑥 ↔ ( ◡ 𝐹 “ 𝑥 ) ⊆ ( ◡ 𝐹 “ 𝑥 ) ) ) | |
| 75 | 72 73 74 | sylancl | ⊢ ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑥 ↔ ( ◡ 𝐹 “ 𝑥 ) ⊆ ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 76 | 71 75 | mpbiri | ⊢ ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑥 ) |
| 77 | imassrn | ⊢ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ ran 𝐹 | |
| 78 | ssin | ⊢ ( ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑥 ∧ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ ran 𝐹 ) ↔ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ ( 𝑥 ∩ ran 𝐹 ) ) | |
| 79 | 76 77 78 | sylanblc | ⊢ ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ ( 𝑥 ∩ ran 𝐹 ) ) |
| 80 | elin | ⊢ ( 𝑧 ∈ ( 𝑥 ∩ ran 𝐹 ) ↔ ( 𝑧 ∈ 𝑥 ∧ 𝑧 ∈ ran 𝐹 ) ) | |
| 81 | fvelrnb | ⊢ ( 𝐹 Fn 𝑌 → ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑦 ∈ 𝑌 ( 𝐹 ‘ 𝑦 ) = 𝑧 ) ) | |
| 82 | 10 81 | syl | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑦 ∈ 𝑌 ( 𝐹 ‘ 𝑦 ) = 𝑧 ) ) |
| 83 | 82 | 3ad2ant3 | ⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑦 ∈ 𝑌 ( 𝐹 ‘ 𝑦 ) = 𝑧 ) ) |
| 84 | 83 | ad3antrrr | ⊢ ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑦 ∈ 𝑌 ( 𝐹 ‘ 𝑦 ) = 𝑧 ) ) |
| 85 | 72 | ad2antrr | ⊢ ( ( ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 ) → Fun 𝐹 ) |
| 86 | 85 73 | jctir | ⊢ ( ( ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 ) → ( Fun 𝐹 ∧ ( ◡ 𝐹 “ 𝑥 ) ⊆ dom 𝐹 ) ) |
| 87 | 57 | ad2antrr | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) → Fun 𝐹 ) |
| 88 | 87 | ad2antrr | ⊢ ( ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) ∧ 𝑦 ∈ 𝑌 ) → Fun 𝐹 ) |
| 89 | 45 | 3ad2ant3 | ⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → dom 𝐹 = 𝑌 ) |
| 90 | 89 | ad3antrrr | ⊢ ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → dom 𝐹 = 𝑌 ) |
| 91 | 90 | eleq2d | ⊢ ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → ( 𝑦 ∈ dom 𝐹 ↔ 𝑦 ∈ 𝑌 ) ) |
| 92 | 91 | biimpar | ⊢ ( ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) ∧ 𝑦 ∈ 𝑌 ) → 𝑦 ∈ dom 𝐹 ) |
| 93 | fvimacnv | ⊢ ( ( Fun 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 ↔ 𝑦 ∈ ( ◡ 𝐹 “ 𝑥 ) ) ) | |
| 94 | 88 92 93 | syl2anc | ⊢ ( ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) ∧ 𝑦 ∈ 𝑌 ) → ( ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 ↔ 𝑦 ∈ ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 95 | 94 | biimpa | ⊢ ( ( ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 ) → 𝑦 ∈ ( ◡ 𝐹 “ 𝑥 ) ) |
| 96 | funfvima2 | ⊢ ( ( Fun 𝐹 ∧ ( ◡ 𝐹 “ 𝑥 ) ⊆ dom 𝐹 ) → ( 𝑦 ∈ ( ◡ 𝐹 “ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ) ) | |
| 97 | 86 95 96 | sylc | ⊢ ( ( ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 98 | 97 | ex | ⊢ ( ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) ∧ 𝑦 ∈ 𝑌 ) → ( ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ) ) |
| 99 | eleq1 | ⊢ ( ( 𝐹 ‘ 𝑦 ) = 𝑧 → ( ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) ) | |
| 100 | eleq1 | ⊢ ( ( 𝐹 ‘ 𝑦 ) = 𝑧 → ( ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ↔ 𝑧 ∈ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ) ) | |
| 101 | 99 100 | imbi12d | ⊢ ( ( 𝐹 ‘ 𝑦 ) = 𝑧 → ( ( ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ) ↔ ( 𝑧 ∈ 𝑥 → 𝑧 ∈ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) |
| 102 | 98 101 | syl5ibcom | ⊢ ( ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) ∧ 𝑦 ∈ 𝑌 ) → ( ( 𝐹 ‘ 𝑦 ) = 𝑧 → ( 𝑧 ∈ 𝑥 → 𝑧 ∈ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) |
| 103 | 102 | rexlimdva | ⊢ ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → ( ∃ 𝑦 ∈ 𝑌 ( 𝐹 ‘ 𝑦 ) = 𝑧 → ( 𝑧 ∈ 𝑥 → 𝑧 ∈ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) |
| 104 | 84 103 | sylbid | ⊢ ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → ( 𝑧 ∈ ran 𝐹 → ( 𝑧 ∈ 𝑥 → 𝑧 ∈ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) |
| 105 | 104 | impcomd | ⊢ ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ∈ ran 𝐹 ) → 𝑧 ∈ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ) ) |
| 106 | 80 105 | biimtrid | ⊢ ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → ( 𝑧 ∈ ( 𝑥 ∩ ran 𝐹 ) → 𝑧 ∈ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ) ) |
| 107 | 106 | ssrdv | ⊢ ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → ( 𝑥 ∩ ran 𝐹 ) ⊆ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 108 | 79 107 | eqssd | ⊢ ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) = ( 𝑥 ∩ ran 𝐹 ) ) |
| 109 | filin | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐿 ∧ ran 𝐹 ∈ 𝐿 ) → ( 𝑥 ∩ ran 𝐹 ) ∈ 𝐿 ) | |
| 110 | 109 | 3exp | ⊢ ( 𝐿 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥 ∈ 𝐿 → ( ran 𝐹 ∈ 𝐿 → ( 𝑥 ∩ ran 𝐹 ) ∈ 𝐿 ) ) ) |
| 111 | 110 | com23 | ⊢ ( 𝐿 ∈ ( Fil ‘ 𝑋 ) → ( ran 𝐹 ∈ 𝐿 → ( 𝑥 ∈ 𝐿 → ( 𝑥 ∩ ran 𝐹 ) ∈ 𝐿 ) ) ) |
| 112 | 111 | 3ad2ant2 | ⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ran 𝐹 ∈ 𝐿 → ( 𝑥 ∈ 𝐿 → ( 𝑥 ∩ ran 𝐹 ) ∈ 𝐿 ) ) ) |
| 113 | 112 | imp31 | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) → ( 𝑥 ∩ ran 𝐹 ) ∈ 𝐿 ) |
| 114 | 113 | adantr | ⊢ ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → ( 𝑥 ∩ ran 𝐹 ) ∈ 𝐿 ) |
| 115 | 108 114 | eqeltrd | ⊢ ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) ∧ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ∧ 𝑡 ⊆ 𝑋 ) ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ∈ 𝐿 ) |
| 116 | 115 | exp32 | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) → ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ∈ 𝐿 ) ) ) |
| 117 | imaeq2 | ⊢ ( 𝑠 = ( ◡ 𝐹 “ 𝑥 ) → ( 𝐹 “ 𝑠 ) = ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ) | |
| 118 | 117 | sseq1d | ⊢ ( 𝑠 = ( ◡ 𝐹 “ 𝑥 ) → ( ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ↔ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 ) ) |
| 119 | 117 | eleq1d | ⊢ ( 𝑠 = ( ◡ 𝐹 “ 𝑥 ) → ( ( 𝐹 “ 𝑠 ) ∈ 𝐿 ↔ ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ∈ 𝐿 ) ) |
| 120 | 119 | imbi2d | ⊢ ( 𝑠 = ( ◡ 𝐹 “ 𝑥 ) → ( ( 𝑡 ⊆ 𝑋 → ( 𝐹 “ 𝑠 ) ∈ 𝐿 ) ↔ ( 𝑡 ⊆ 𝑋 → ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ∈ 𝐿 ) ) ) |
| 121 | 118 120 | imbi12d | ⊢ ( 𝑠 = ( ◡ 𝐹 “ 𝑥 ) → ( ( ( 𝐹 “ 𝑠 ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → ( 𝐹 “ 𝑠 ) ∈ 𝐿 ) ) ↔ ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) ∈ 𝐿 ) ) ) ) |
| 122 | 116 121 | syl5ibrcom | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) → ( 𝑠 = ( ◡ 𝐹 “ 𝑥 ) → ( ( 𝐹 “ 𝑠 ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → ( 𝐹 “ 𝑠 ) ∈ 𝐿 ) ) ) ) |
| 123 | 122 | rexlimdva | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( ∃ 𝑥 ∈ 𝐿 𝑠 = ( ◡ 𝐹 “ 𝑥 ) → ( ( 𝐹 “ 𝑠 ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → ( 𝐹 “ 𝑠 ) ∈ 𝐿 ) ) ) ) |
| 124 | 70 123 | biimtrid | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) → ( ( 𝐹 “ 𝑠 ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → ( 𝐹 “ 𝑠 ) ∈ 𝐿 ) ) ) ) |
| 125 | 124 | imp44 | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( ( 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∧ ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ) ∧ 𝑡 ⊆ 𝑋 ) ) → ( 𝐹 “ 𝑠 ) ∈ 𝐿 ) |
| 126 | simprr | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( ( 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∧ ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ) ∧ 𝑡 ⊆ 𝑋 ) ) → 𝑡 ⊆ 𝑋 ) | |
| 127 | simprlr | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( ( 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∧ ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ) ∧ 𝑡 ⊆ 𝑋 ) ) → ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ) | |
| 128 | filss | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ ( ( 𝐹 “ 𝑠 ) ∈ 𝐿 ∧ 𝑡 ⊆ 𝑋 ∧ ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ) ) → 𝑡 ∈ 𝐿 ) | |
| 129 | 68 125 126 127 128 | syl13anc | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( ( 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∧ ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ) ∧ 𝑡 ⊆ 𝑋 ) ) → 𝑡 ∈ 𝐿 ) |
| 130 | 129 | exp44 | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) → ( ( 𝐹 “ 𝑠 ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿 ) ) ) ) |
| 131 | 130 | rexlimdv | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( ∃ 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ( 𝐹 “ 𝑠 ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿 ) ) ) |
| 132 | 131 | impcomd | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ) → 𝑡 ∈ 𝐿 ) ) |
| 133 | 67 132 | impbid | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( 𝑡 ∈ 𝐿 ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ) ) ) |
| 134 | 2 | adantr | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → 𝑋 ∈ 𝐿 ) |
| 135 | rnelfmlem | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∈ ( fBas ‘ 𝑌 ) ) | |
| 136 | simpl3 | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → 𝐹 : 𝑌 ⟶ 𝑋 ) | |
| 137 | elfm | ⊢ ( ( 𝑋 ∈ 𝐿 ∧ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑡 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ) ) ) | |
| 138 | 134 135 136 137 | syl3anc | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( 𝑡 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ) ) ) |
| 139 | 133 138 | bitr4d | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( 𝑡 ∈ 𝐿 ↔ 𝑡 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) |
| 140 | 139 | eqrdv | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → 𝐿 = ( ( 𝑋 FilMap 𝐹 ) ‘ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) |
| 141 | 7 | adantr | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( 𝑋 FilMap 𝐹 ) Fn ( fBas ‘ 𝑌 ) ) |
| 142 | fnfvelrn | ⊢ ( ( ( 𝑋 FilMap 𝐹 ) Fn ( fBas ‘ 𝑌 ) ∧ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∈ ( fBas ‘ 𝑌 ) ) → ( ( 𝑋 FilMap 𝐹 ) ‘ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ∈ ran ( 𝑋 FilMap 𝐹 ) ) | |
| 143 | 141 135 142 | syl2anc | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( ( 𝑋 FilMap 𝐹 ) ‘ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ∈ ran ( 𝑋 FilMap 𝐹 ) ) |
| 144 | 140 143 | eqeltrd | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → 𝐿 ∈ ran ( 𝑋 FilMap 𝐹 ) ) |
| 145 | 144 | ex | ⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ran 𝐹 ∈ 𝐿 → 𝐿 ∈ ran ( 𝑋 FilMap 𝐹 ) ) ) |
| 146 | 33 145 | impbid | ⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐿 ∈ ran ( 𝑋 FilMap 𝐹 ) ↔ ran 𝐹 ∈ 𝐿 ) ) |