This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The argument of a function value belongs to the preimage of any class containing the function value. Raph Levien remarks: "This proof is unsatisfying, because it seems to me that funimass2 could probably be strengthened to a biconditional." (Contributed by Raph Levien, 20-Nov-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvimacnv | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ↔ 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfvop | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ∈ 𝐹 ) | |
| 2 | fvex | ⊢ ( 𝐹 ‘ 𝐴 ) ∈ V | |
| 3 | opelcnvg | ⊢ ( ( ( 𝐹 ‘ 𝐴 ) ∈ V ∧ 𝐴 ∈ dom 𝐹 ) → ( 〈 ( 𝐹 ‘ 𝐴 ) , 𝐴 〉 ∈ ◡ 𝐹 ↔ 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ∈ 𝐹 ) ) | |
| 4 | 2 3 | mpan | ⊢ ( 𝐴 ∈ dom 𝐹 → ( 〈 ( 𝐹 ‘ 𝐴 ) , 𝐴 〉 ∈ ◡ 𝐹 ↔ 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ∈ 𝐹 ) ) |
| 5 | 4 | adantl | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( 〈 ( 𝐹 ‘ 𝐴 ) , 𝐴 〉 ∈ ◡ 𝐹 ↔ 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ∈ 𝐹 ) ) |
| 6 | 1 5 | mpbird | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → 〈 ( 𝐹 ‘ 𝐴 ) , 𝐴 〉 ∈ ◡ 𝐹 ) |
| 7 | elimasng | ⊢ ( ( ( 𝐹 ‘ 𝐴 ) ∈ V ∧ 𝐴 ∈ dom 𝐹 ) → ( 𝐴 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ↔ 〈 ( 𝐹 ‘ 𝐴 ) , 𝐴 〉 ∈ ◡ 𝐹 ) ) | |
| 8 | 2 7 | mpan | ⊢ ( 𝐴 ∈ dom 𝐹 → ( 𝐴 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ↔ 〈 ( 𝐹 ‘ 𝐴 ) , 𝐴 〉 ∈ ◡ 𝐹 ) ) |
| 9 | 8 | adantl | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( 𝐴 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ↔ 〈 ( 𝐹 ‘ 𝐴 ) , 𝐴 〉 ∈ ◡ 𝐹 ) ) |
| 10 | 6 9 | mpbird | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → 𝐴 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ) |
| 11 | 2 | snss | ⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ↔ { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝐵 ) |
| 12 | imass2 | ⊢ ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝐵 → ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ⊆ ( ◡ 𝐹 “ 𝐵 ) ) | |
| 13 | 11 12 | sylbi | ⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 → ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ⊆ ( ◡ 𝐹 “ 𝐵 ) ) |
| 14 | 13 | sseld | ⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 → ( 𝐴 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) → 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) ) ) |
| 15 | 10 14 | syl5com | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 → 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) ) ) |
| 16 | fvimacnvi | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ) | |
| 17 | 16 | ex | ⊢ ( Fun 𝐹 → ( 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ) ) |
| 18 | 17 | adantr | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ) ) |
| 19 | 15 18 | impbid | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ↔ 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) ) ) |