This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element of a mapping filter. (Contributed by Jeff Hankins, 8-Sep-2009) (Revised by Stefan O'Rear, 6-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfm | ⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ↔ ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmval | ⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) = ( 𝑋 filGen ran ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) ) ) | |
| 2 | 1 | eleq2d | ⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ↔ 𝐴 ∈ ( 𝑋 filGen ran ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) ) ) ) |
| 3 | eqid | ⊢ ran ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) = ran ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) | |
| 4 | 3 | fbasrn | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝑋 ∈ 𝐶 ) → ran ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) ∈ ( fBas ‘ 𝑋 ) ) |
| 5 | 4 | 3comr | ⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ran ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) ∈ ( fBas ‘ 𝑋 ) ) |
| 6 | elfg | ⊢ ( ran ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) ∈ ( fBas ‘ 𝑋 ) → ( 𝐴 ∈ ( 𝑋 filGen ran ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) ) ↔ ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ ran ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) 𝑦 ⊆ 𝐴 ) ) ) | |
| 7 | 5 6 | syl | ⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( 𝑋 filGen ran ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) ) ↔ ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ ran ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) 𝑦 ⊆ 𝐴 ) ) ) |
| 8 | simpr | ⊢ ( ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) | |
| 9 | eqid | ⊢ ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑥 ) | |
| 10 | imaeq2 | ⊢ ( 𝑡 = 𝑥 → ( 𝐹 “ 𝑡 ) = ( 𝐹 “ 𝑥 ) ) | |
| 11 | 10 | rspceeqv | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑥 ) ) → ∃ 𝑡 ∈ 𝐵 ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑡 ) ) |
| 12 | 8 9 11 | sylancl | ⊢ ( ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑡 ∈ 𝐵 ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑡 ) ) |
| 13 | simpl1 | ⊢ ( ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑋 ∈ 𝐶 ) | |
| 14 | imassrn | ⊢ ( 𝐹 “ 𝑥 ) ⊆ ran 𝐹 | |
| 15 | frn | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → ran 𝐹 ⊆ 𝑋 ) | |
| 16 | 15 | 3ad2ant3 | ⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ran 𝐹 ⊆ 𝑋 ) |
| 17 | 16 | adantr | ⊢ ( ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑥 ∈ 𝐵 ) → ran 𝐹 ⊆ 𝑋 ) |
| 18 | 14 17 | sstrid | ⊢ ( ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 “ 𝑥 ) ⊆ 𝑋 ) |
| 19 | 13 18 | ssexd | ⊢ ( ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 “ 𝑥 ) ∈ V ) |
| 20 | eqid | ⊢ ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) = ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) | |
| 21 | 20 | elrnmpt | ⊢ ( ( 𝐹 “ 𝑥 ) ∈ V → ( ( 𝐹 “ 𝑥 ) ∈ ran ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) ↔ ∃ 𝑡 ∈ 𝐵 ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑡 ) ) ) |
| 22 | 19 21 | syl | ⊢ ( ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝐹 “ 𝑥 ) ∈ ran ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) ↔ ∃ 𝑡 ∈ 𝐵 ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑡 ) ) ) |
| 23 | 12 22 | mpbird | ⊢ ( ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 “ 𝑥 ) ∈ ran ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) ) |
| 24 | 10 | cbvmptv | ⊢ ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) |
| 25 | 24 | elrnmpt | ⊢ ( 𝑦 ∈ ran ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) → ( 𝑦 ∈ ran ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) ↔ ∃ 𝑥 ∈ 𝐵 𝑦 = ( 𝐹 “ 𝑥 ) ) ) |
| 26 | 25 | ibi | ⊢ ( 𝑦 ∈ ran ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) → ∃ 𝑥 ∈ 𝐵 𝑦 = ( 𝐹 “ 𝑥 ) ) |
| 27 | 26 | adantl | ⊢ ( ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑦 ∈ ran ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) ) → ∃ 𝑥 ∈ 𝐵 𝑦 = ( 𝐹 “ 𝑥 ) ) |
| 28 | simpr | ⊢ ( ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑦 = ( 𝐹 “ 𝑥 ) ) → 𝑦 = ( 𝐹 “ 𝑥 ) ) | |
| 29 | 28 | sseq1d | ⊢ ( ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑦 = ( 𝐹 “ 𝑥 ) ) → ( 𝑦 ⊆ 𝐴 ↔ ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) |
| 30 | 23 27 29 | rexxfrd | ⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ∃ 𝑦 ∈ ran ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) 𝑦 ⊆ 𝐴 ↔ ∃ 𝑥 ∈ 𝐵 ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) |
| 31 | 30 | anbi2d | ⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ ran ( 𝑡 ∈ 𝐵 ↦ ( 𝐹 “ 𝑡 ) ) 𝑦 ⊆ 𝐴 ) ↔ ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) ) |
| 32 | 2 7 31 | 3bitrd | ⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ↔ ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) ) |