This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Syllogism inference combined with a biconditional. (Contributed by BJ, 25-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylanblc.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| sylanblc.2 | ⊢ 𝜒 | ||
| sylanblc.3 | ⊢ ( ( 𝜓 ∧ 𝜒 ) ↔ 𝜃 ) | ||
| Assertion | sylanblc | ⊢ ( 𝜑 → 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanblc.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| 2 | sylanblc.2 | ⊢ 𝜒 | |
| 3 | sylanblc.3 | ⊢ ( ( 𝜓 ∧ 𝜒 ) ↔ 𝜃 ) | |
| 4 | 3 | biimpi | ⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜃 ) |
| 5 | 1 2 4 | sylancl | ⊢ ( 𝜑 → 𝜃 ) |