This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rnelfm . (Contributed by Jeff Hankins, 14-Nov-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rnelfmlem | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∈ ( fBas ‘ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → 𝑌 ∈ 𝐴 ) | |
| 2 | cnvimass | ⊢ ( ◡ 𝐹 “ 𝑥 ) ⊆ dom 𝐹 | |
| 3 | simpl3 | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → 𝐹 : 𝑌 ⟶ 𝑋 ) | |
| 4 | 2 3 | fssdm | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( ◡ 𝐹 “ 𝑥 ) ⊆ 𝑌 ) |
| 5 | 1 4 | sselpwd | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝒫 𝑌 ) |
| 6 | 5 | adantr | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝒫 𝑌 ) |
| 7 | 6 | fmpttd | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) : 𝐿 ⟶ 𝒫 𝑌 ) |
| 8 | 7 | frnd | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝒫 𝑌 ) |
| 9 | filtop | ⊢ ( 𝐿 ∈ ( Fil ‘ 𝑋 ) → 𝑋 ∈ 𝐿 ) | |
| 10 | 9 | 3ad2ant2 | ⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → 𝑋 ∈ 𝐿 ) |
| 11 | 10 | adantr | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → 𝑋 ∈ 𝐿 ) |
| 12 | fimacnv | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → ( ◡ 𝐹 “ 𝑋 ) = 𝑌 ) | |
| 13 | 12 | eqcomd | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → 𝑌 = ( ◡ 𝐹 “ 𝑋 ) ) |
| 14 | 13 | 3ad2ant3 | ⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → 𝑌 = ( ◡ 𝐹 “ 𝑋 ) ) |
| 15 | 14 | adantr | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → 𝑌 = ( ◡ 𝐹 “ 𝑋 ) ) |
| 16 | imaeq2 | ⊢ ( 𝑥 = 𝑋 → ( ◡ 𝐹 “ 𝑥 ) = ( ◡ 𝐹 “ 𝑋 ) ) | |
| 17 | 16 | rspceeqv | ⊢ ( ( 𝑋 ∈ 𝐿 ∧ 𝑌 = ( ◡ 𝐹 “ 𝑋 ) ) → ∃ 𝑥 ∈ 𝐿 𝑌 = ( ◡ 𝐹 “ 𝑥 ) ) |
| 18 | 11 15 17 | syl2anc | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ∃ 𝑥 ∈ 𝐿 𝑌 = ( ◡ 𝐹 “ 𝑥 ) ) |
| 19 | eqid | ⊢ ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) = ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) | |
| 20 | 19 | elrnmpt | ⊢ ( 𝑌 ∈ 𝐴 → ( 𝑌 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 𝑌 = ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 21 | 20 | 3ad2ant1 | ⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑌 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 𝑌 = ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 22 | 21 | adantr | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( 𝑌 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 𝑌 = ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 23 | 18 22 | mpbird | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → 𝑌 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 24 | 23 | ne0d | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ≠ ∅ ) |
| 25 | 0nelfil | ⊢ ( 𝐿 ∈ ( Fil ‘ 𝑋 ) → ¬ ∅ ∈ 𝐿 ) | |
| 26 | 25 | 3ad2ant2 | ⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ¬ ∅ ∈ 𝐿 ) |
| 27 | 26 | adantr | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ¬ ∅ ∈ 𝐿 ) |
| 28 | 0ex | ⊢ ∅ ∈ V | |
| 29 | 19 | elrnmpt | ⊢ ( ∅ ∈ V → ( ∅ ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 ∅ = ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 30 | 28 29 | ax-mp | ⊢ ( ∅ ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 ∅ = ( ◡ 𝐹 “ 𝑥 ) ) |
| 31 | ffn | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → 𝐹 Fn 𝑌 ) | |
| 32 | fvelrnb | ⊢ ( 𝐹 Fn 𝑌 → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑧 ∈ 𝑌 ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) | |
| 33 | 31 32 | syl | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑧 ∈ 𝑌 ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) |
| 34 | 33 | 3ad2ant3 | ⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑧 ∈ 𝑌 ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) |
| 35 | 34 | ad2antrr | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥 ) ) → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑧 ∈ 𝑌 ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) |
| 36 | eleq1 | ⊢ ( ( 𝐹 ‘ 𝑧 ) = 𝑦 → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑥 ↔ 𝑦 ∈ 𝑥 ) ) | |
| 37 | 36 | biimparc | ⊢ ( ( 𝑦 ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑥 ) |
| 38 | 37 | ad2ant2l | ⊢ ( ( ( 𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑌 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑥 ) |
| 39 | 38 | adantll | ⊢ ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥 ) ) ∧ ( 𝑧 ∈ 𝑌 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑥 ) |
| 40 | ffun | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → Fun 𝐹 ) | |
| 41 | 40 | 3ad2ant3 | ⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → Fun 𝐹 ) |
| 42 | 41 | ad3antrrr | ⊢ ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥 ) ) ∧ ( 𝑧 ∈ 𝑌 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) → Fun 𝐹 ) |
| 43 | fdm | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → dom 𝐹 = 𝑌 ) | |
| 44 | 43 | eleq2d | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → ( 𝑧 ∈ dom 𝐹 ↔ 𝑧 ∈ 𝑌 ) ) |
| 45 | 44 | biimpar | ⊢ ( ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝑧 ∈ 𝑌 ) → 𝑧 ∈ dom 𝐹 ) |
| 46 | 45 | 3ad2antl3 | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑧 ∈ 𝑌 ) → 𝑧 ∈ dom 𝐹 ) |
| 47 | 46 | adantlr | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑧 ∈ 𝑌 ) → 𝑧 ∈ dom 𝐹 ) |
| 48 | 47 | ad2ant2r | ⊢ ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥 ) ) ∧ ( 𝑧 ∈ 𝑌 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) → 𝑧 ∈ dom 𝐹 ) |
| 49 | fvimacnv | ⊢ ( ( Fun 𝐹 ∧ 𝑧 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑥 ↔ 𝑧 ∈ ( ◡ 𝐹 “ 𝑥 ) ) ) | |
| 50 | 42 48 49 | syl2anc | ⊢ ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥 ) ) ∧ ( 𝑧 ∈ 𝑌 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑥 ↔ 𝑧 ∈ ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 51 | 39 50 | mpbid | ⊢ ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥 ) ) ∧ ( 𝑧 ∈ 𝑌 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) → 𝑧 ∈ ( ◡ 𝐹 “ 𝑥 ) ) |
| 52 | n0i | ⊢ ( 𝑧 ∈ ( ◡ 𝐹 “ 𝑥 ) → ¬ ( ◡ 𝐹 “ 𝑥 ) = ∅ ) | |
| 53 | eqcom | ⊢ ( ( ◡ 𝐹 “ 𝑥 ) = ∅ ↔ ∅ = ( ◡ 𝐹 “ 𝑥 ) ) | |
| 54 | 52 53 | sylnib | ⊢ ( 𝑧 ∈ ( ◡ 𝐹 “ 𝑥 ) → ¬ ∅ = ( ◡ 𝐹 “ 𝑥 ) ) |
| 55 | 51 54 | syl | ⊢ ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥 ) ) ∧ ( 𝑧 ∈ 𝑌 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) → ¬ ∅ = ( ◡ 𝐹 “ 𝑥 ) ) |
| 56 | 55 | rexlimdvaa | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥 ) ) → ( ∃ 𝑧 ∈ 𝑌 ( 𝐹 ‘ 𝑧 ) = 𝑦 → ¬ ∅ = ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 57 | 35 56 | sylbid | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥 ) ) → ( 𝑦 ∈ ran 𝐹 → ¬ ∅ = ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 58 | 57 | con2d | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥 ) ) → ( ∅ = ( ◡ 𝐹 “ 𝑥 ) → ¬ 𝑦 ∈ ran 𝐹 ) ) |
| 59 | 58 | expr | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) → ( 𝑦 ∈ 𝑥 → ( ∅ = ( ◡ 𝐹 “ 𝑥 ) → ¬ 𝑦 ∈ ran 𝐹 ) ) ) |
| 60 | 59 | com23 | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) → ( ∅ = ( ◡ 𝐹 “ 𝑥 ) → ( 𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ ran 𝐹 ) ) ) |
| 61 | 60 | impr | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝐿 ∧ ∅ = ( ◡ 𝐹 “ 𝑥 ) ) ) → ( 𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ ran 𝐹 ) ) |
| 62 | 61 | alrimiv | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝐿 ∧ ∅ = ( ◡ 𝐹 “ 𝑥 ) ) ) → ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ ran 𝐹 ) ) |
| 63 | imnan | ⊢ ( ( 𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ ran 𝐹 ) ↔ ¬ ( 𝑦 ∈ 𝑥 ∧ 𝑦 ∈ ran 𝐹 ) ) | |
| 64 | elin | ⊢ ( 𝑦 ∈ ( 𝑥 ∩ ran 𝐹 ) ↔ ( 𝑦 ∈ 𝑥 ∧ 𝑦 ∈ ran 𝐹 ) ) | |
| 65 | 63 64 | xchbinxr | ⊢ ( ( 𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ ran 𝐹 ) ↔ ¬ 𝑦 ∈ ( 𝑥 ∩ ran 𝐹 ) ) |
| 66 | 65 | albii | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ ran 𝐹 ) ↔ ∀ 𝑦 ¬ 𝑦 ∈ ( 𝑥 ∩ ran 𝐹 ) ) |
| 67 | eq0 | ⊢ ( ( 𝑥 ∩ ran 𝐹 ) = ∅ ↔ ∀ 𝑦 ¬ 𝑦 ∈ ( 𝑥 ∩ ran 𝐹 ) ) | |
| 68 | eqcom | ⊢ ( ( 𝑥 ∩ ran 𝐹 ) = ∅ ↔ ∅ = ( 𝑥 ∩ ran 𝐹 ) ) | |
| 69 | 66 67 68 | 3bitr2i | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ ran 𝐹 ) ↔ ∅ = ( 𝑥 ∩ ran 𝐹 ) ) |
| 70 | 62 69 | sylib | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝐿 ∧ ∅ = ( ◡ 𝐹 “ 𝑥 ) ) ) → ∅ = ( 𝑥 ∩ ran 𝐹 ) ) |
| 71 | simpll2 | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝐿 ∧ ∅ = ( ◡ 𝐹 “ 𝑥 ) ) ) → 𝐿 ∈ ( Fil ‘ 𝑋 ) ) | |
| 72 | simprl | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝐿 ∧ ∅ = ( ◡ 𝐹 “ 𝑥 ) ) ) → 𝑥 ∈ 𝐿 ) | |
| 73 | simplr | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝐿 ∧ ∅ = ( ◡ 𝐹 “ 𝑥 ) ) ) → ran 𝐹 ∈ 𝐿 ) | |
| 74 | filin | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐿 ∧ ran 𝐹 ∈ 𝐿 ) → ( 𝑥 ∩ ran 𝐹 ) ∈ 𝐿 ) | |
| 75 | 71 72 73 74 | syl3anc | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝐿 ∧ ∅ = ( ◡ 𝐹 “ 𝑥 ) ) ) → ( 𝑥 ∩ ran 𝐹 ) ∈ 𝐿 ) |
| 76 | 70 75 | eqeltrd | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝐿 ∧ ∅ = ( ◡ 𝐹 “ 𝑥 ) ) ) → ∅ ∈ 𝐿 ) |
| 77 | 76 | rexlimdvaa | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( ∃ 𝑥 ∈ 𝐿 ∅ = ( ◡ 𝐹 “ 𝑥 ) → ∅ ∈ 𝐿 ) ) |
| 78 | 30 77 | biimtrid | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( ∅ ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) → ∅ ∈ 𝐿 ) ) |
| 79 | 27 78 | mtod | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ¬ ∅ ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 80 | df-nel | ⊢ ( ∅ ∉ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ¬ ∅ ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) | |
| 81 | 79 80 | sylibr | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ∅ ∉ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 82 | 19 | elrnmpt | ⊢ ( 𝑟 ∈ V → ( 𝑟 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 𝑟 = ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 83 | 82 | elv | ⊢ ( 𝑟 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 𝑟 = ( ◡ 𝐹 “ 𝑥 ) ) |
| 84 | imaeq2 | ⊢ ( 𝑥 = 𝑢 → ( ◡ 𝐹 “ 𝑥 ) = ( ◡ 𝐹 “ 𝑢 ) ) | |
| 85 | 84 | eqeq2d | ⊢ ( 𝑥 = 𝑢 → ( 𝑟 = ( ◡ 𝐹 “ 𝑥 ) ↔ 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ) ) |
| 86 | 85 | cbvrexvw | ⊢ ( ∃ 𝑥 ∈ 𝐿 𝑟 = ( ◡ 𝐹 “ 𝑥 ) ↔ ∃ 𝑢 ∈ 𝐿 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ) |
| 87 | 83 86 | bitri | ⊢ ( 𝑟 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑢 ∈ 𝐿 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ) |
| 88 | 19 | elrnmpt | ⊢ ( 𝑠 ∈ V → ( 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 𝑠 = ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 89 | 88 | elv | ⊢ ( 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 𝑠 = ( ◡ 𝐹 “ 𝑥 ) ) |
| 90 | imaeq2 | ⊢ ( 𝑥 = 𝑣 → ( ◡ 𝐹 “ 𝑥 ) = ( ◡ 𝐹 “ 𝑣 ) ) | |
| 91 | 90 | eqeq2d | ⊢ ( 𝑥 = 𝑣 → ( 𝑠 = ( ◡ 𝐹 “ 𝑥 ) ↔ 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) ) |
| 92 | 91 | cbvrexvw | ⊢ ( ∃ 𝑥 ∈ 𝐿 𝑠 = ( ◡ 𝐹 “ 𝑥 ) ↔ ∃ 𝑣 ∈ 𝐿 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) |
| 93 | 89 92 | bitri | ⊢ ( 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑣 ∈ 𝐿 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) |
| 94 | 87 93 | anbi12i | ⊢ ( ( 𝑟 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∧ 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ↔ ( ∃ 𝑢 ∈ 𝐿 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ∧ ∃ 𝑣 ∈ 𝐿 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) ) |
| 95 | reeanv | ⊢ ( ∃ 𝑢 ∈ 𝐿 ∃ 𝑣 ∈ 𝐿 ( 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ∧ 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) ↔ ( ∃ 𝑢 ∈ 𝐿 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ∧ ∃ 𝑣 ∈ 𝐿 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) ) | |
| 96 | 94 95 | bitr4i | ⊢ ( ( 𝑟 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∧ 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ↔ ∃ 𝑢 ∈ 𝐿 ∃ 𝑣 ∈ 𝐿 ( 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ∧ 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) ) |
| 97 | filin | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿 ) → ( 𝑢 ∩ 𝑣 ) ∈ 𝐿 ) | |
| 98 | 97 | 3expb | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿 ) ) → ( 𝑢 ∩ 𝑣 ) ∈ 𝐿 ) |
| 99 | 98 | adantlr | ⊢ ( ( ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿 ) ) → ( 𝑢 ∩ 𝑣 ) ∈ 𝐿 ) |
| 100 | eqidd | ⊢ ( ( ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿 ) ) → ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) = ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ) | |
| 101 | imaeq2 | ⊢ ( 𝑥 = ( 𝑢 ∩ 𝑣 ) → ( ◡ 𝐹 “ 𝑥 ) = ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ) | |
| 102 | 101 | rspceeqv | ⊢ ( ( ( 𝑢 ∩ 𝑣 ) ∈ 𝐿 ∧ ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) = ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ) → ∃ 𝑥 ∈ 𝐿 ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) = ( ◡ 𝐹 “ 𝑥 ) ) |
| 103 | 99 100 102 | syl2anc | ⊢ ( ( ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿 ) ) → ∃ 𝑥 ∈ 𝐿 ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) = ( ◡ 𝐹 “ 𝑥 ) ) |
| 104 | 103 | 3adantl1 | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿 ) ) → ∃ 𝑥 ∈ 𝐿 ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) = ( ◡ 𝐹 “ 𝑥 ) ) |
| 105 | 104 | ad2ant2r | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( ( 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿 ) ∧ ( 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ∧ 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) ) ) → ∃ 𝑥 ∈ 𝐿 ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) = ( ◡ 𝐹 “ 𝑥 ) ) |
| 106 | simpll1 | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( ( 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿 ) ∧ ( 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ∧ 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) ) ) → 𝑌 ∈ 𝐴 ) | |
| 107 | cnvimass | ⊢ ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ⊆ dom 𝐹 | |
| 108 | 107 43 | sseqtrid | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ⊆ 𝑌 ) |
| 109 | 108 | 3ad2ant3 | ⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ⊆ 𝑌 ) |
| 110 | 109 | ad2antrr | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( ( 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿 ) ∧ ( 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ∧ 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) ) ) → ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ⊆ 𝑌 ) |
| 111 | 106 110 | ssexd | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( ( 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿 ) ∧ ( 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ∧ 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) ) ) → ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ∈ V ) |
| 112 | 19 | elrnmpt | ⊢ ( ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ∈ V → ( ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) = ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 113 | 111 112 | syl | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( ( 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿 ) ∧ ( 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ∧ 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) ) ) → ( ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) = ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 114 | 105 113 | mpbird | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( ( 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿 ) ∧ ( 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ∧ 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) ) ) → ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 115 | simprrl | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( ( 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿 ) ∧ ( 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ∧ 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) ) ) → 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ) | |
| 116 | simprrr | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( ( 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿 ) ∧ ( 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ∧ 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) ) ) → 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) | |
| 117 | 115 116 | ineq12d | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( ( 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿 ) ∧ ( 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ∧ 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) ) ) → ( 𝑟 ∩ 𝑠 ) = ( ( ◡ 𝐹 “ 𝑢 ) ∩ ( ◡ 𝐹 “ 𝑣 ) ) ) |
| 118 | funcnvcnv | ⊢ ( Fun 𝐹 → Fun ◡ ◡ 𝐹 ) | |
| 119 | imain | ⊢ ( Fun ◡ ◡ 𝐹 → ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) = ( ( ◡ 𝐹 “ 𝑢 ) ∩ ( ◡ 𝐹 “ 𝑣 ) ) ) | |
| 120 | 40 118 119 | 3syl | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) = ( ( ◡ 𝐹 “ 𝑢 ) ∩ ( ◡ 𝐹 “ 𝑣 ) ) ) |
| 121 | 120 | 3ad2ant3 | ⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) = ( ( ◡ 𝐹 “ 𝑢 ) ∩ ( ◡ 𝐹 “ 𝑣 ) ) ) |
| 122 | 121 | ad2antrr | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( ( 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿 ) ∧ ( 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ∧ 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) ) ) → ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) = ( ( ◡ 𝐹 “ 𝑢 ) ∩ ( ◡ 𝐹 “ 𝑣 ) ) ) |
| 123 | 117 122 | eqtr4d | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( ( 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿 ) ∧ ( 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ∧ 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) ) ) → ( 𝑟 ∩ 𝑠 ) = ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ) |
| 124 | eqimss2 | ⊢ ( ( 𝑟 ∩ 𝑠 ) = ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) → ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ⊆ ( 𝑟 ∩ 𝑠 ) ) | |
| 125 | 123 124 | syl | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( ( 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿 ) ∧ ( 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ∧ 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) ) ) → ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ⊆ ( 𝑟 ∩ 𝑠 ) ) |
| 126 | sseq1 | ⊢ ( 𝑡 = ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) → ( 𝑡 ⊆ ( 𝑟 ∩ 𝑠 ) ↔ ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ⊆ ( 𝑟 ∩ 𝑠 ) ) ) | |
| 127 | 126 | rspcev | ⊢ ( ( ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∧ ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ⊆ ( 𝑟 ∩ 𝑠 ) ) → ∃ 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) 𝑡 ⊆ ( 𝑟 ∩ 𝑠 ) ) |
| 128 | 114 125 127 | syl2anc | ⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( ( 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿 ) ∧ ( 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ∧ 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) ) ) → ∃ 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) 𝑡 ⊆ ( 𝑟 ∩ 𝑠 ) ) |
| 129 | 128 | exp32 | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( ( 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿 ) → ( ( 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ∧ 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) → ∃ 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) 𝑡 ⊆ ( 𝑟 ∩ 𝑠 ) ) ) ) |
| 130 | 129 | rexlimdvv | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( ∃ 𝑢 ∈ 𝐿 ∃ 𝑣 ∈ 𝐿 ( 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ∧ 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) → ∃ 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) 𝑡 ⊆ ( 𝑟 ∩ 𝑠 ) ) ) |
| 131 | 96 130 | biimtrid | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( ( 𝑟 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∧ 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) → ∃ 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) 𝑡 ⊆ ( 𝑟 ∩ 𝑠 ) ) ) |
| 132 | 131 | ralrimivv | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ∀ 𝑟 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∀ 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∃ 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) 𝑡 ⊆ ( 𝑟 ∩ 𝑠 ) ) |
| 133 | 24 81 132 | 3jca | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ≠ ∅ ∧ ∅ ∉ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∧ ∀ 𝑟 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∀ 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∃ 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) 𝑡 ⊆ ( 𝑟 ∩ 𝑠 ) ) ) |
| 134 | isfbas2 | ⊢ ( 𝑌 ∈ 𝐴 → ( ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∈ ( fBas ‘ 𝑌 ) ↔ ( ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝒫 𝑌 ∧ ( ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ≠ ∅ ∧ ∅ ∉ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∧ ∀ 𝑟 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∀ 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∃ 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) 𝑡 ⊆ ( 𝑟 ∩ 𝑠 ) ) ) ) ) | |
| 135 | 1 134 | syl | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∈ ( fBas ‘ 𝑌 ) ↔ ( ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝒫 𝑌 ∧ ( ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ≠ ∅ ∧ ∅ ∉ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∧ ∀ 𝑟 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∀ 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∃ 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) 𝑡 ⊆ ( 𝑟 ∩ 𝑠 ) ) ) ) ) |
| 136 | 8 133 135 | mpbir2and | ⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∈ ( fBas ‘ 𝑌 ) ) |