This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fmfnfm . (Contributed by Jeff Hankins, 18-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fmfnfm.b | ⊢ ( 𝜑 → 𝐵 ∈ ( fBas ‘ 𝑌 ) ) | |
| fmfnfm.l | ⊢ ( 𝜑 → 𝐿 ∈ ( Fil ‘ 𝑋 ) ) | ||
| fmfnfm.f | ⊢ ( 𝜑 → 𝐹 : 𝑌 ⟶ 𝑋 ) | ||
| fmfnfm.fm | ⊢ ( 𝜑 → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ⊆ 𝐿 ) | ||
| Assertion | fmfnfmlem1 | ⊢ ( 𝜑 → ( 𝑠 ∈ ( fi ‘ 𝐵 ) → ( ( 𝐹 “ 𝑠 ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmfnfm.b | ⊢ ( 𝜑 → 𝐵 ∈ ( fBas ‘ 𝑌 ) ) | |
| 2 | fmfnfm.l | ⊢ ( 𝜑 → 𝐿 ∈ ( Fil ‘ 𝑋 ) ) | |
| 3 | fmfnfm.f | ⊢ ( 𝜑 → 𝐹 : 𝑌 ⟶ 𝑋 ) | |
| 4 | fmfnfm.fm | ⊢ ( 𝜑 → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ⊆ 𝐿 ) | |
| 5 | fbssfi | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑠 ∈ ( fi ‘ 𝐵 ) ) → ∃ 𝑤 ∈ 𝐵 𝑤 ⊆ 𝑠 ) | |
| 6 | 1 5 | sylan | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( fi ‘ 𝐵 ) ) → ∃ 𝑤 ∈ 𝐵 𝑤 ⊆ 𝑠 ) |
| 7 | sstr2 | ⊢ ( ( 𝐹 “ 𝑤 ) ⊆ ( 𝐹 “ 𝑠 ) → ( ( 𝐹 “ 𝑠 ) ⊆ 𝑡 → ( 𝐹 “ 𝑤 ) ⊆ 𝑡 ) ) | |
| 8 | imass2 | ⊢ ( 𝑤 ⊆ 𝑠 → ( 𝐹 “ 𝑤 ) ⊆ ( 𝐹 “ 𝑠 ) ) | |
| 9 | 7 8 | syl11 | ⊢ ( ( 𝐹 “ 𝑠 ) ⊆ 𝑡 → ( 𝑤 ⊆ 𝑠 → ( 𝐹 “ 𝑤 ) ⊆ 𝑡 ) ) |
| 10 | 9 | reximdv | ⊢ ( ( 𝐹 “ 𝑠 ) ⊆ 𝑡 → ( ∃ 𝑤 ∈ 𝐵 𝑤 ⊆ 𝑠 → ∃ 𝑤 ∈ 𝐵 ( 𝐹 “ 𝑤 ) ⊆ 𝑡 ) ) |
| 11 | 6 10 | syl5com | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( fi ‘ 𝐵 ) ) → ( ( 𝐹 “ 𝑠 ) ⊆ 𝑡 → ∃ 𝑤 ∈ 𝐵 ( 𝐹 “ 𝑤 ) ⊆ 𝑡 ) ) |
| 12 | filtop | ⊢ ( 𝐿 ∈ ( Fil ‘ 𝑋 ) → 𝑋 ∈ 𝐿 ) | |
| 13 | 2 12 | syl | ⊢ ( 𝜑 → 𝑋 ∈ 𝐿 ) |
| 14 | elfm | ⊢ ( ( 𝑋 ∈ 𝐿 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑡 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑤 ∈ 𝐵 ( 𝐹 “ 𝑤 ) ⊆ 𝑡 ) ) ) | |
| 15 | 13 1 3 14 | syl3anc | ⊢ ( 𝜑 → ( 𝑡 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑤 ∈ 𝐵 ( 𝐹 “ 𝑤 ) ⊆ 𝑡 ) ) ) |
| 16 | 4 | sseld | ⊢ ( 𝜑 → ( 𝑡 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) → 𝑡 ∈ 𝐿 ) ) |
| 17 | 15 16 | sylbird | ⊢ ( 𝜑 → ( ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑤 ∈ 𝐵 ( 𝐹 “ 𝑤 ) ⊆ 𝑡 ) → 𝑡 ∈ 𝐿 ) ) |
| 18 | 17 | expcomd | ⊢ ( 𝜑 → ( ∃ 𝑤 ∈ 𝐵 ( 𝐹 “ 𝑤 ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿 ) ) ) |
| 19 | 18 | adantr | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( fi ‘ 𝐵 ) ) → ( ∃ 𝑤 ∈ 𝐵 ( 𝐹 “ 𝑤 ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿 ) ) ) |
| 20 | 11 19 | syld | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( fi ‘ 𝐵 ) ) → ( ( 𝐹 “ 𝑠 ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿 ) ) ) |
| 21 | 20 | ex | ⊢ ( 𝜑 → ( 𝑠 ∈ ( fi ‘ 𝐵 ) → ( ( 𝐹 “ 𝑠 ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿 ) ) ) ) |