This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A filter is closed under taking intersections. (Contributed by FL, 20-Jul-2007) (Revised by Stefan O'Rear, 28-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | filin | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | filfbas | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) | |
| 2 | fbasssin | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹 ) → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝐴 ∩ 𝐵 ) ) | |
| 3 | 1 2 | syl3an1 | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹 ) → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝐴 ∩ 𝐵 ) ) |
| 4 | inss1 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 | |
| 5 | filelss | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → 𝐴 ⊆ 𝑋 ) | |
| 6 | 4 5 | sstrid | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ( 𝐴 ∩ 𝐵 ) ⊆ 𝑋 ) |
| 7 | filss | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝐹 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝑋 ∧ 𝑥 ⊆ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐹 ) | |
| 8 | 7 | 3exp2 | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥 ∈ 𝐹 → ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝑋 → ( 𝑥 ⊆ ( 𝐴 ∩ 𝐵 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐹 ) ) ) ) |
| 9 | 8 | com23 | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝑋 → ( 𝑥 ∈ 𝐹 → ( 𝑥 ⊆ ( 𝐴 ∩ 𝐵 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐹 ) ) ) ) |
| 10 | 9 | imp | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝑋 ) → ( 𝑥 ∈ 𝐹 → ( 𝑥 ⊆ ( 𝐴 ∩ 𝐵 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐹 ) ) ) |
| 11 | 10 | rexlimdv | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝑋 ) → ( ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝐴 ∩ 𝐵 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐹 ) ) |
| 12 | 6 11 | syldan | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ( ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝐴 ∩ 𝐵 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐹 ) ) |
| 13 | 12 | 3adant3 | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹 ) → ( ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝐴 ∩ 𝐵 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐹 ) ) |
| 14 | 3 13 | mpd | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐹 ) |