This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition for a filter to be an image filter for a given function. (Contributed by Jeff Hankins, 14-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rnelfm | |- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( L e. ran ( X FilMap F ) <-> ran F e. L ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | filtop | |- ( L e. ( Fil ` X ) -> X e. L ) |
|
| 2 | 1 | 3ad2ant2 | |- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> X e. L ) |
| 3 | simp1 | |- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> Y e. A ) |
|
| 4 | simp3 | |- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> F : Y --> X ) |
|
| 5 | fmf | |- ( ( X e. L /\ Y e. A /\ F : Y --> X ) -> ( X FilMap F ) : ( fBas ` Y ) --> ( Fil ` X ) ) |
|
| 6 | 2 3 4 5 | syl3anc | |- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( X FilMap F ) : ( fBas ` Y ) --> ( Fil ` X ) ) |
| 7 | 6 | ffnd | |- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( X FilMap F ) Fn ( fBas ` Y ) ) |
| 8 | fvelrnb | |- ( ( X FilMap F ) Fn ( fBas ` Y ) -> ( L e. ran ( X FilMap F ) <-> E. b e. ( fBas ` Y ) ( ( X FilMap F ) ` b ) = L ) ) |
|
| 9 | 7 8 | syl | |- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( L e. ran ( X FilMap F ) <-> E. b e. ( fBas ` Y ) ( ( X FilMap F ) ` b ) = L ) ) |
| 10 | ffn | |- ( F : Y --> X -> F Fn Y ) |
|
| 11 | dffn4 | |- ( F Fn Y <-> F : Y -onto-> ran F ) |
|
| 12 | 10 11 | sylib | |- ( F : Y --> X -> F : Y -onto-> ran F ) |
| 13 | foima | |- ( F : Y -onto-> ran F -> ( F " Y ) = ran F ) |
|
| 14 | 12 13 | syl | |- ( F : Y --> X -> ( F " Y ) = ran F ) |
| 15 | 14 | ad2antlr | |- ( ( ( X e. L /\ F : Y --> X ) /\ b e. ( fBas ` Y ) ) -> ( F " Y ) = ran F ) |
| 16 | simpll | |- ( ( ( X e. L /\ F : Y --> X ) /\ b e. ( fBas ` Y ) ) -> X e. L ) |
|
| 17 | simpr | |- ( ( ( X e. L /\ F : Y --> X ) /\ b e. ( fBas ` Y ) ) -> b e. ( fBas ` Y ) ) |
|
| 18 | simplr | |- ( ( ( X e. L /\ F : Y --> X ) /\ b e. ( fBas ` Y ) ) -> F : Y --> X ) |
|
| 19 | fgcl | |- ( b e. ( fBas ` Y ) -> ( Y filGen b ) e. ( Fil ` Y ) ) |
|
| 20 | filtop | |- ( ( Y filGen b ) e. ( Fil ` Y ) -> Y e. ( Y filGen b ) ) |
|
| 21 | 19 20 | syl | |- ( b e. ( fBas ` Y ) -> Y e. ( Y filGen b ) ) |
| 22 | 21 | adantl | |- ( ( ( X e. L /\ F : Y --> X ) /\ b e. ( fBas ` Y ) ) -> Y e. ( Y filGen b ) ) |
| 23 | eqid | |- ( Y filGen b ) = ( Y filGen b ) |
|
| 24 | 23 | imaelfm | |- ( ( ( X e. L /\ b e. ( fBas ` Y ) /\ F : Y --> X ) /\ Y e. ( Y filGen b ) ) -> ( F " Y ) e. ( ( X FilMap F ) ` b ) ) |
| 25 | 16 17 18 22 24 | syl31anc | |- ( ( ( X e. L /\ F : Y --> X ) /\ b e. ( fBas ` Y ) ) -> ( F " Y ) e. ( ( X FilMap F ) ` b ) ) |
| 26 | 15 25 | eqeltrrd | |- ( ( ( X e. L /\ F : Y --> X ) /\ b e. ( fBas ` Y ) ) -> ran F e. ( ( X FilMap F ) ` b ) ) |
| 27 | eleq2 | |- ( ( ( X FilMap F ) ` b ) = L -> ( ran F e. ( ( X FilMap F ) ` b ) <-> ran F e. L ) ) |
|
| 28 | 26 27 | syl5ibcom | |- ( ( ( X e. L /\ F : Y --> X ) /\ b e. ( fBas ` Y ) ) -> ( ( ( X FilMap F ) ` b ) = L -> ran F e. L ) ) |
| 29 | 28 | ex | |- ( ( X e. L /\ F : Y --> X ) -> ( b e. ( fBas ` Y ) -> ( ( ( X FilMap F ) ` b ) = L -> ran F e. L ) ) ) |
| 30 | 1 29 | sylan | |- ( ( L e. ( Fil ` X ) /\ F : Y --> X ) -> ( b e. ( fBas ` Y ) -> ( ( ( X FilMap F ) ` b ) = L -> ran F e. L ) ) ) |
| 31 | 30 | 3adant1 | |- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( b e. ( fBas ` Y ) -> ( ( ( X FilMap F ) ` b ) = L -> ran F e. L ) ) ) |
| 32 | 31 | rexlimdv | |- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( E. b e. ( fBas ` Y ) ( ( X FilMap F ) ` b ) = L -> ran F e. L ) ) |
| 33 | 9 32 | sylbid | |- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( L e. ran ( X FilMap F ) -> ran F e. L ) ) |
| 34 | simpl2 | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> L e. ( Fil ` X ) ) |
|
| 35 | filelss | |- ( ( L e. ( Fil ` X ) /\ t e. L ) -> t C_ X ) |
|
| 36 | 35 | ex | |- ( L e. ( Fil ` X ) -> ( t e. L -> t C_ X ) ) |
| 37 | 34 36 | syl | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( t e. L -> t C_ X ) ) |
| 38 | simpr | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ t e. L ) -> t e. L ) |
|
| 39 | eqidd | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ t e. L ) -> ( `' F " t ) = ( `' F " t ) ) |
|
| 40 | imaeq2 | |- ( x = t -> ( `' F " x ) = ( `' F " t ) ) |
|
| 41 | 40 | rspceeqv | |- ( ( t e. L /\ ( `' F " t ) = ( `' F " t ) ) -> E. x e. L ( `' F " t ) = ( `' F " x ) ) |
| 42 | 38 39 41 | syl2anc | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ t e. L ) -> E. x e. L ( `' F " t ) = ( `' F " x ) ) |
| 43 | simpl1 | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> Y e. A ) |
|
| 44 | cnvimass | |- ( `' F " t ) C_ dom F |
|
| 45 | fdm | |- ( F : Y --> X -> dom F = Y ) |
|
| 46 | 44 45 | sseqtrid | |- ( F : Y --> X -> ( `' F " t ) C_ Y ) |
| 47 | 46 | 3ad2ant3 | |- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( `' F " t ) C_ Y ) |
| 48 | 47 | adantr | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( `' F " t ) C_ Y ) |
| 49 | 43 48 | ssexd | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( `' F " t ) e. _V ) |
| 50 | eqid | |- ( x e. L |-> ( `' F " x ) ) = ( x e. L |-> ( `' F " x ) ) |
|
| 51 | 50 | elrnmpt | |- ( ( `' F " t ) e. _V -> ( ( `' F " t ) e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L ( `' F " t ) = ( `' F " x ) ) ) |
| 52 | 49 51 | syl | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( ( `' F " t ) e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L ( `' F " t ) = ( `' F " x ) ) ) |
| 53 | 52 | adantr | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ t e. L ) -> ( ( `' F " t ) e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L ( `' F " t ) = ( `' F " x ) ) ) |
| 54 | 42 53 | mpbird | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ t e. L ) -> ( `' F " t ) e. ran ( x e. L |-> ( `' F " x ) ) ) |
| 55 | ssid | |- ( `' F " t ) C_ ( `' F " t ) |
|
| 56 | ffun | |- ( F : Y --> X -> Fun F ) |
|
| 57 | 56 | 3ad2ant3 | |- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> Fun F ) |
| 58 | 57 | ad2antrr | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ t e. L ) -> Fun F ) |
| 59 | funimass3 | |- ( ( Fun F /\ ( `' F " t ) C_ dom F ) -> ( ( F " ( `' F " t ) ) C_ t <-> ( `' F " t ) C_ ( `' F " t ) ) ) |
|
| 60 | 58 44 59 | sylancl | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ t e. L ) -> ( ( F " ( `' F " t ) ) C_ t <-> ( `' F " t ) C_ ( `' F " t ) ) ) |
| 61 | 55 60 | mpbiri | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ t e. L ) -> ( F " ( `' F " t ) ) C_ t ) |
| 62 | imaeq2 | |- ( s = ( `' F " t ) -> ( F " s ) = ( F " ( `' F " t ) ) ) |
|
| 63 | 62 | sseq1d | |- ( s = ( `' F " t ) -> ( ( F " s ) C_ t <-> ( F " ( `' F " t ) ) C_ t ) ) |
| 64 | 63 | rspcev | |- ( ( ( `' F " t ) e. ran ( x e. L |-> ( `' F " x ) ) /\ ( F " ( `' F " t ) ) C_ t ) -> E. s e. ran ( x e. L |-> ( `' F " x ) ) ( F " s ) C_ t ) |
| 65 | 54 61 64 | syl2anc | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ t e. L ) -> E. s e. ran ( x e. L |-> ( `' F " x ) ) ( F " s ) C_ t ) |
| 66 | 65 | ex | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( t e. L -> E. s e. ran ( x e. L |-> ( `' F " x ) ) ( F " s ) C_ t ) ) |
| 67 | 37 66 | jcad | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( t e. L -> ( t C_ X /\ E. s e. ran ( x e. L |-> ( `' F " x ) ) ( F " s ) C_ t ) ) ) |
| 68 | 34 | adantr | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( s e. ran ( x e. L |-> ( `' F " x ) ) /\ ( F " s ) C_ t ) /\ t C_ X ) ) -> L e. ( Fil ` X ) ) |
| 69 | 50 | elrnmpt | |- ( s e. _V -> ( s e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L s = ( `' F " x ) ) ) |
| 70 | 69 | elv | |- ( s e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L s = ( `' F " x ) ) |
| 71 | ssid | |- ( `' F " x ) C_ ( `' F " x ) |
|
| 72 | 57 | ad3antrrr | |- ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> Fun F ) |
| 73 | cnvimass | |- ( `' F " x ) C_ dom F |
|
| 74 | funimass3 | |- ( ( Fun F /\ ( `' F " x ) C_ dom F ) -> ( ( F " ( `' F " x ) ) C_ x <-> ( `' F " x ) C_ ( `' F " x ) ) ) |
|
| 75 | 72 73 74 | sylancl | |- ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( ( F " ( `' F " x ) ) C_ x <-> ( `' F " x ) C_ ( `' F " x ) ) ) |
| 76 | 71 75 | mpbiri | |- ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( F " ( `' F " x ) ) C_ x ) |
| 77 | imassrn | |- ( F " ( `' F " x ) ) C_ ran F |
|
| 78 | ssin | |- ( ( ( F " ( `' F " x ) ) C_ x /\ ( F " ( `' F " x ) ) C_ ran F ) <-> ( F " ( `' F " x ) ) C_ ( x i^i ran F ) ) |
|
| 79 | 76 77 78 | sylanblc | |- ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( F " ( `' F " x ) ) C_ ( x i^i ran F ) ) |
| 80 | elin | |- ( z e. ( x i^i ran F ) <-> ( z e. x /\ z e. ran F ) ) |
|
| 81 | fvelrnb | |- ( F Fn Y -> ( z e. ran F <-> E. y e. Y ( F ` y ) = z ) ) |
|
| 82 | 10 81 | syl | |- ( F : Y --> X -> ( z e. ran F <-> E. y e. Y ( F ` y ) = z ) ) |
| 83 | 82 | 3ad2ant3 | |- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( z e. ran F <-> E. y e. Y ( F ` y ) = z ) ) |
| 84 | 83 | ad3antrrr | |- ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( z e. ran F <-> E. y e. Y ( F ` y ) = z ) ) |
| 85 | 72 | ad2antrr | |- ( ( ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) /\ y e. Y ) /\ ( F ` y ) e. x ) -> Fun F ) |
| 86 | 85 73 | jctir | |- ( ( ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) /\ y e. Y ) /\ ( F ` y ) e. x ) -> ( Fun F /\ ( `' F " x ) C_ dom F ) ) |
| 87 | 57 | ad2antrr | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) -> Fun F ) |
| 88 | 87 | ad2antrr | |- ( ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) /\ y e. Y ) -> Fun F ) |
| 89 | 45 | 3ad2ant3 | |- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> dom F = Y ) |
| 90 | 89 | ad3antrrr | |- ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> dom F = Y ) |
| 91 | 90 | eleq2d | |- ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( y e. dom F <-> y e. Y ) ) |
| 92 | 91 | biimpar | |- ( ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) /\ y e. Y ) -> y e. dom F ) |
| 93 | fvimacnv | |- ( ( Fun F /\ y e. dom F ) -> ( ( F ` y ) e. x <-> y e. ( `' F " x ) ) ) |
|
| 94 | 88 92 93 | syl2anc | |- ( ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) /\ y e. Y ) -> ( ( F ` y ) e. x <-> y e. ( `' F " x ) ) ) |
| 95 | 94 | biimpa | |- ( ( ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) /\ y e. Y ) /\ ( F ` y ) e. x ) -> y e. ( `' F " x ) ) |
| 96 | funfvima2 | |- ( ( Fun F /\ ( `' F " x ) C_ dom F ) -> ( y e. ( `' F " x ) -> ( F ` y ) e. ( F " ( `' F " x ) ) ) ) |
|
| 97 | 86 95 96 | sylc | |- ( ( ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) /\ y e. Y ) /\ ( F ` y ) e. x ) -> ( F ` y ) e. ( F " ( `' F " x ) ) ) |
| 98 | 97 | ex | |- ( ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) /\ y e. Y ) -> ( ( F ` y ) e. x -> ( F ` y ) e. ( F " ( `' F " x ) ) ) ) |
| 99 | eleq1 | |- ( ( F ` y ) = z -> ( ( F ` y ) e. x <-> z e. x ) ) |
|
| 100 | eleq1 | |- ( ( F ` y ) = z -> ( ( F ` y ) e. ( F " ( `' F " x ) ) <-> z e. ( F " ( `' F " x ) ) ) ) |
|
| 101 | 99 100 | imbi12d | |- ( ( F ` y ) = z -> ( ( ( F ` y ) e. x -> ( F ` y ) e. ( F " ( `' F " x ) ) ) <-> ( z e. x -> z e. ( F " ( `' F " x ) ) ) ) ) |
| 102 | 98 101 | syl5ibcom | |- ( ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) /\ y e. Y ) -> ( ( F ` y ) = z -> ( z e. x -> z e. ( F " ( `' F " x ) ) ) ) ) |
| 103 | 102 | rexlimdva | |- ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( E. y e. Y ( F ` y ) = z -> ( z e. x -> z e. ( F " ( `' F " x ) ) ) ) ) |
| 104 | 84 103 | sylbid | |- ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( z e. ran F -> ( z e. x -> z e. ( F " ( `' F " x ) ) ) ) ) |
| 105 | 104 | impcomd | |- ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( ( z e. x /\ z e. ran F ) -> z e. ( F " ( `' F " x ) ) ) ) |
| 106 | 80 105 | biimtrid | |- ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( z e. ( x i^i ran F ) -> z e. ( F " ( `' F " x ) ) ) ) |
| 107 | 106 | ssrdv | |- ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( x i^i ran F ) C_ ( F " ( `' F " x ) ) ) |
| 108 | 79 107 | eqssd | |- ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( F " ( `' F " x ) ) = ( x i^i ran F ) ) |
| 109 | filin | |- ( ( L e. ( Fil ` X ) /\ x e. L /\ ran F e. L ) -> ( x i^i ran F ) e. L ) |
|
| 110 | 109 | 3exp | |- ( L e. ( Fil ` X ) -> ( x e. L -> ( ran F e. L -> ( x i^i ran F ) e. L ) ) ) |
| 111 | 110 | com23 | |- ( L e. ( Fil ` X ) -> ( ran F e. L -> ( x e. L -> ( x i^i ran F ) e. L ) ) ) |
| 112 | 111 | 3ad2ant2 | |- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( ran F e. L -> ( x e. L -> ( x i^i ran F ) e. L ) ) ) |
| 113 | 112 | imp31 | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) -> ( x i^i ran F ) e. L ) |
| 114 | 113 | adantr | |- ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( x i^i ran F ) e. L ) |
| 115 | 108 114 | eqeltrd | |- ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( F " ( `' F " x ) ) e. L ) |
| 116 | 115 | exp32 | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) -> ( ( F " ( `' F " x ) ) C_ t -> ( t C_ X -> ( F " ( `' F " x ) ) e. L ) ) ) |
| 117 | imaeq2 | |- ( s = ( `' F " x ) -> ( F " s ) = ( F " ( `' F " x ) ) ) |
|
| 118 | 117 | sseq1d | |- ( s = ( `' F " x ) -> ( ( F " s ) C_ t <-> ( F " ( `' F " x ) ) C_ t ) ) |
| 119 | 117 | eleq1d | |- ( s = ( `' F " x ) -> ( ( F " s ) e. L <-> ( F " ( `' F " x ) ) e. L ) ) |
| 120 | 119 | imbi2d | |- ( s = ( `' F " x ) -> ( ( t C_ X -> ( F " s ) e. L ) <-> ( t C_ X -> ( F " ( `' F " x ) ) e. L ) ) ) |
| 121 | 118 120 | imbi12d | |- ( s = ( `' F " x ) -> ( ( ( F " s ) C_ t -> ( t C_ X -> ( F " s ) e. L ) ) <-> ( ( F " ( `' F " x ) ) C_ t -> ( t C_ X -> ( F " ( `' F " x ) ) e. L ) ) ) ) |
| 122 | 116 121 | syl5ibrcom | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) -> ( s = ( `' F " x ) -> ( ( F " s ) C_ t -> ( t C_ X -> ( F " s ) e. L ) ) ) ) |
| 123 | 122 | rexlimdva | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( E. x e. L s = ( `' F " x ) -> ( ( F " s ) C_ t -> ( t C_ X -> ( F " s ) e. L ) ) ) ) |
| 124 | 70 123 | biimtrid | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( s e. ran ( x e. L |-> ( `' F " x ) ) -> ( ( F " s ) C_ t -> ( t C_ X -> ( F " s ) e. L ) ) ) ) |
| 125 | 124 | imp44 | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( s e. ran ( x e. L |-> ( `' F " x ) ) /\ ( F " s ) C_ t ) /\ t C_ X ) ) -> ( F " s ) e. L ) |
| 126 | simprr | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( s e. ran ( x e. L |-> ( `' F " x ) ) /\ ( F " s ) C_ t ) /\ t C_ X ) ) -> t C_ X ) |
|
| 127 | simprlr | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( s e. ran ( x e. L |-> ( `' F " x ) ) /\ ( F " s ) C_ t ) /\ t C_ X ) ) -> ( F " s ) C_ t ) |
|
| 128 | filss | |- ( ( L e. ( Fil ` X ) /\ ( ( F " s ) e. L /\ t C_ X /\ ( F " s ) C_ t ) ) -> t e. L ) |
|
| 129 | 68 125 126 127 128 | syl13anc | |- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( s e. ran ( x e. L |-> ( `' F " x ) ) /\ ( F " s ) C_ t ) /\ t C_ X ) ) -> t e. L ) |
| 130 | 129 | exp44 | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( s e. ran ( x e. L |-> ( `' F " x ) ) -> ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) ) |
| 131 | 130 | rexlimdv | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( E. s e. ran ( x e. L |-> ( `' F " x ) ) ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) |
| 132 | 131 | impcomd | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( ( t C_ X /\ E. s e. ran ( x e. L |-> ( `' F " x ) ) ( F " s ) C_ t ) -> t e. L ) ) |
| 133 | 67 132 | impbid | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( t e. L <-> ( t C_ X /\ E. s e. ran ( x e. L |-> ( `' F " x ) ) ( F " s ) C_ t ) ) ) |
| 134 | 2 | adantr | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> X e. L ) |
| 135 | rnelfmlem | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ran ( x e. L |-> ( `' F " x ) ) e. ( fBas ` Y ) ) |
|
| 136 | simpl3 | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> F : Y --> X ) |
|
| 137 | elfm | |- ( ( X e. L /\ ran ( x e. L |-> ( `' F " x ) ) e. ( fBas ` Y ) /\ F : Y --> X ) -> ( t e. ( ( X FilMap F ) ` ran ( x e. L |-> ( `' F " x ) ) ) <-> ( t C_ X /\ E. s e. ran ( x e. L |-> ( `' F " x ) ) ( F " s ) C_ t ) ) ) |
|
| 138 | 134 135 136 137 | syl3anc | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( t e. ( ( X FilMap F ) ` ran ( x e. L |-> ( `' F " x ) ) ) <-> ( t C_ X /\ E. s e. ran ( x e. L |-> ( `' F " x ) ) ( F " s ) C_ t ) ) ) |
| 139 | 133 138 | bitr4d | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( t e. L <-> t e. ( ( X FilMap F ) ` ran ( x e. L |-> ( `' F " x ) ) ) ) ) |
| 140 | 139 | eqrdv | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> L = ( ( X FilMap F ) ` ran ( x e. L |-> ( `' F " x ) ) ) ) |
| 141 | 7 | adantr | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( X FilMap F ) Fn ( fBas ` Y ) ) |
| 142 | fnfvelrn | |- ( ( ( X FilMap F ) Fn ( fBas ` Y ) /\ ran ( x e. L |-> ( `' F " x ) ) e. ( fBas ` Y ) ) -> ( ( X FilMap F ) ` ran ( x e. L |-> ( `' F " x ) ) ) e. ran ( X FilMap F ) ) |
|
| 143 | 141 135 142 | syl2anc | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( ( X FilMap F ) ` ran ( x e. L |-> ( `' F " x ) ) ) e. ran ( X FilMap F ) ) |
| 144 | 140 143 | eqeltrd | |- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> L e. ran ( X FilMap F ) ) |
| 145 | 144 | ex | |- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( ran F e. L -> L e. ran ( X FilMap F ) ) ) |
| 146 | 33 145 | impbid | |- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( L e. ran ( X FilMap F ) <-> ran F e. L ) ) |