This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any set must be at least as large as the cofinality of its rank, because the ranks of the elements of A form a cofinal map into ( rankA ) . (Contributed by Mario Carneiro, 27-May-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rankcf | ⊢ ¬ 𝐴 ≺ ( cf ‘ ( rank ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankon | ⊢ ( rank ‘ 𝐴 ) ∈ On | |
| 2 | onzsl | ⊢ ( ( rank ‘ 𝐴 ) ∈ On ↔ ( ( rank ‘ 𝐴 ) = ∅ ∨ ∃ 𝑥 ∈ On ( rank ‘ 𝐴 ) = suc 𝑥 ∨ ( ( rank ‘ 𝐴 ) ∈ V ∧ Lim ( rank ‘ 𝐴 ) ) ) ) | |
| 3 | 1 2 | mpbi | ⊢ ( ( rank ‘ 𝐴 ) = ∅ ∨ ∃ 𝑥 ∈ On ( rank ‘ 𝐴 ) = suc 𝑥 ∨ ( ( rank ‘ 𝐴 ) ∈ V ∧ Lim ( rank ‘ 𝐴 ) ) ) |
| 4 | sdom0 | ⊢ ¬ 𝐴 ≺ ∅ | |
| 5 | fveq2 | ⊢ ( ( rank ‘ 𝐴 ) = ∅ → ( cf ‘ ( rank ‘ 𝐴 ) ) = ( cf ‘ ∅ ) ) | |
| 6 | cf0 | ⊢ ( cf ‘ ∅ ) = ∅ | |
| 7 | 5 6 | eqtrdi | ⊢ ( ( rank ‘ 𝐴 ) = ∅ → ( cf ‘ ( rank ‘ 𝐴 ) ) = ∅ ) |
| 8 | 7 | breq2d | ⊢ ( ( rank ‘ 𝐴 ) = ∅ → ( 𝐴 ≺ ( cf ‘ ( rank ‘ 𝐴 ) ) ↔ 𝐴 ≺ ∅ ) ) |
| 9 | 4 8 | mtbiri | ⊢ ( ( rank ‘ 𝐴 ) = ∅ → ¬ 𝐴 ≺ ( cf ‘ ( rank ‘ 𝐴 ) ) ) |
| 10 | fveq2 | ⊢ ( ( rank ‘ 𝐴 ) = suc 𝑥 → ( cf ‘ ( rank ‘ 𝐴 ) ) = ( cf ‘ suc 𝑥 ) ) | |
| 11 | cfsuc | ⊢ ( 𝑥 ∈ On → ( cf ‘ suc 𝑥 ) = 1o ) | |
| 12 | 10 11 | sylan9eqr | ⊢ ( ( 𝑥 ∈ On ∧ ( rank ‘ 𝐴 ) = suc 𝑥 ) → ( cf ‘ ( rank ‘ 𝐴 ) ) = 1o ) |
| 13 | nsuceq0 | ⊢ suc 𝑥 ≠ ∅ | |
| 14 | neeq1 | ⊢ ( ( rank ‘ 𝐴 ) = suc 𝑥 → ( ( rank ‘ 𝐴 ) ≠ ∅ ↔ suc 𝑥 ≠ ∅ ) ) | |
| 15 | 13 14 | mpbiri | ⊢ ( ( rank ‘ 𝐴 ) = suc 𝑥 → ( rank ‘ 𝐴 ) ≠ ∅ ) |
| 16 | fveq2 | ⊢ ( 𝐴 = ∅ → ( rank ‘ 𝐴 ) = ( rank ‘ ∅ ) ) | |
| 17 | 0elon | ⊢ ∅ ∈ On | |
| 18 | r1fnon | ⊢ 𝑅1 Fn On | |
| 19 | 18 | fndmi | ⊢ dom 𝑅1 = On |
| 20 | 17 19 | eleqtrri | ⊢ ∅ ∈ dom 𝑅1 |
| 21 | rankonid | ⊢ ( ∅ ∈ dom 𝑅1 ↔ ( rank ‘ ∅ ) = ∅ ) | |
| 22 | 20 21 | mpbi | ⊢ ( rank ‘ ∅ ) = ∅ |
| 23 | 16 22 | eqtrdi | ⊢ ( 𝐴 = ∅ → ( rank ‘ 𝐴 ) = ∅ ) |
| 24 | 23 | necon3i | ⊢ ( ( rank ‘ 𝐴 ) ≠ ∅ → 𝐴 ≠ ∅ ) |
| 25 | rankvaln | ⊢ ( ¬ 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) = ∅ ) | |
| 26 | 25 | necon1ai | ⊢ ( ( rank ‘ 𝐴 ) ≠ ∅ → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
| 27 | breq2 | ⊢ ( 𝑦 = 𝐴 → ( 1o ≼ 𝑦 ↔ 1o ≼ 𝐴 ) ) | |
| 28 | neeq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ≠ ∅ ↔ 𝐴 ≠ ∅ ) ) | |
| 29 | 0sdom1dom | ⊢ ( ∅ ≺ 𝑦 ↔ 1o ≼ 𝑦 ) | |
| 30 | vex | ⊢ 𝑦 ∈ V | |
| 31 | 30 | 0sdom | ⊢ ( ∅ ≺ 𝑦 ↔ 𝑦 ≠ ∅ ) |
| 32 | 29 31 | bitr3i | ⊢ ( 1o ≼ 𝑦 ↔ 𝑦 ≠ ∅ ) |
| 33 | 27 28 32 | vtoclbg | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( 1o ≼ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
| 34 | 26 33 | syl | ⊢ ( ( rank ‘ 𝐴 ) ≠ ∅ → ( 1o ≼ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
| 35 | 24 34 | mpbird | ⊢ ( ( rank ‘ 𝐴 ) ≠ ∅ → 1o ≼ 𝐴 ) |
| 36 | 15 35 | syl | ⊢ ( ( rank ‘ 𝐴 ) = suc 𝑥 → 1o ≼ 𝐴 ) |
| 37 | 36 | adantl | ⊢ ( ( 𝑥 ∈ On ∧ ( rank ‘ 𝐴 ) = suc 𝑥 ) → 1o ≼ 𝐴 ) |
| 38 | 12 37 | eqbrtrd | ⊢ ( ( 𝑥 ∈ On ∧ ( rank ‘ 𝐴 ) = suc 𝑥 ) → ( cf ‘ ( rank ‘ 𝐴 ) ) ≼ 𝐴 ) |
| 39 | 38 | rexlimiva | ⊢ ( ∃ 𝑥 ∈ On ( rank ‘ 𝐴 ) = suc 𝑥 → ( cf ‘ ( rank ‘ 𝐴 ) ) ≼ 𝐴 ) |
| 40 | domnsym | ⊢ ( ( cf ‘ ( rank ‘ 𝐴 ) ) ≼ 𝐴 → ¬ 𝐴 ≺ ( cf ‘ ( rank ‘ 𝐴 ) ) ) | |
| 41 | 39 40 | syl | ⊢ ( ∃ 𝑥 ∈ On ( rank ‘ 𝐴 ) = suc 𝑥 → ¬ 𝐴 ≺ ( cf ‘ ( rank ‘ 𝐴 ) ) ) |
| 42 | nlim0 | ⊢ ¬ Lim ∅ | |
| 43 | limeq | ⊢ ( ( rank ‘ 𝐴 ) = ∅ → ( Lim ( rank ‘ 𝐴 ) ↔ Lim ∅ ) ) | |
| 44 | 42 43 | mtbiri | ⊢ ( ( rank ‘ 𝐴 ) = ∅ → ¬ Lim ( rank ‘ 𝐴 ) ) |
| 45 | 25 44 | syl | ⊢ ( ¬ 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ¬ Lim ( rank ‘ 𝐴 ) ) |
| 46 | 45 | con4i | ⊢ ( Lim ( rank ‘ 𝐴 ) → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
| 47 | r1elssi | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ⊆ ∪ ( 𝑅1 “ On ) ) | |
| 48 | 46 47 | syl | ⊢ ( Lim ( rank ‘ 𝐴 ) → 𝐴 ⊆ ∪ ( 𝑅1 “ On ) ) |
| 49 | 48 | sselda | ⊢ ( ( Lim ( rank ‘ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ∪ ( 𝑅1 “ On ) ) |
| 50 | ranksnb | ⊢ ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ { 𝑥 } ) = suc ( rank ‘ 𝑥 ) ) | |
| 51 | 49 50 | syl | ⊢ ( ( Lim ( rank ‘ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( rank ‘ { 𝑥 } ) = suc ( rank ‘ 𝑥 ) ) |
| 52 | rankelb | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( 𝑥 ∈ 𝐴 → ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝐴 ) ) ) | |
| 53 | 46 52 | syl | ⊢ ( Lim ( rank ‘ 𝐴 ) → ( 𝑥 ∈ 𝐴 → ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝐴 ) ) ) |
| 54 | limsuc | ⊢ ( Lim ( rank ‘ 𝐴 ) → ( ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝐴 ) ↔ suc ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝐴 ) ) ) | |
| 55 | 53 54 | sylibd | ⊢ ( Lim ( rank ‘ 𝐴 ) → ( 𝑥 ∈ 𝐴 → suc ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝐴 ) ) ) |
| 56 | 55 | imp | ⊢ ( ( Lim ( rank ‘ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → suc ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝐴 ) ) |
| 57 | 51 56 | eqeltrd | ⊢ ( ( Lim ( rank ‘ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( rank ‘ { 𝑥 } ) ∈ ( rank ‘ 𝐴 ) ) |
| 58 | eleq1a | ⊢ ( ( rank ‘ { 𝑥 } ) ∈ ( rank ‘ 𝐴 ) → ( 𝑤 = ( rank ‘ { 𝑥 } ) → 𝑤 ∈ ( rank ‘ 𝐴 ) ) ) | |
| 59 | 57 58 | syl | ⊢ ( ( Lim ( rank ‘ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑤 = ( rank ‘ { 𝑥 } ) → 𝑤 ∈ ( rank ‘ 𝐴 ) ) ) |
| 60 | 59 | rexlimdva | ⊢ ( Lim ( rank ‘ 𝐴 ) → ( ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) → 𝑤 ∈ ( rank ‘ 𝐴 ) ) ) |
| 61 | 60 | abssdv | ⊢ ( Lim ( rank ‘ 𝐴 ) → { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) } ⊆ ( rank ‘ 𝐴 ) ) |
| 62 | vsnex | ⊢ { 𝑥 } ∈ V | |
| 63 | 62 | dfiun2 | ⊢ ∪ 𝑥 ∈ 𝐴 { 𝑥 } = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } |
| 64 | iunid | ⊢ ∪ 𝑥 ∈ 𝐴 { 𝑥 } = 𝐴 | |
| 65 | 63 64 | eqtr3i | ⊢ ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } = 𝐴 |
| 66 | 65 | fveq2i | ⊢ ( rank ‘ ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } ) = ( rank ‘ 𝐴 ) |
| 67 | 47 | sselda | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ∪ ( 𝑅1 “ On ) ) |
| 68 | snwf | ⊢ ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) → { 𝑥 } ∈ ∪ ( 𝑅1 “ On ) ) | |
| 69 | eleq1a | ⊢ ( { 𝑥 } ∈ ∪ ( 𝑅1 “ On ) → ( 𝑦 = { 𝑥 } → 𝑦 ∈ ∪ ( 𝑅1 “ On ) ) ) | |
| 70 | 67 68 69 | 3syl | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 = { 𝑥 } → 𝑦 ∈ ∪ ( 𝑅1 “ On ) ) ) |
| 71 | 70 | rexlimdva | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } → 𝑦 ∈ ∪ ( 𝑅1 “ On ) ) ) |
| 72 | 71 | abssdv | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } ⊆ ∪ ( 𝑅1 “ On ) ) |
| 73 | abrexexg | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } ∈ V ) | |
| 74 | eleq1 | ⊢ ( 𝑧 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } → ( 𝑧 ∈ ∪ ( 𝑅1 “ On ) ↔ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } ∈ ∪ ( 𝑅1 “ On ) ) ) | |
| 75 | sseq1 | ⊢ ( 𝑧 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } → ( 𝑧 ⊆ ∪ ( 𝑅1 “ On ) ↔ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } ⊆ ∪ ( 𝑅1 “ On ) ) ) | |
| 76 | vex | ⊢ 𝑧 ∈ V | |
| 77 | 76 | r1elss | ⊢ ( 𝑧 ∈ ∪ ( 𝑅1 “ On ) ↔ 𝑧 ⊆ ∪ ( 𝑅1 “ On ) ) |
| 78 | 74 75 77 | vtoclbg | ⊢ ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } ∈ V → ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } ∈ ∪ ( 𝑅1 “ On ) ↔ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } ⊆ ∪ ( 𝑅1 “ On ) ) ) |
| 79 | 73 78 | syl | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } ∈ ∪ ( 𝑅1 “ On ) ↔ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } ⊆ ∪ ( 𝑅1 “ On ) ) ) |
| 80 | 72 79 | mpbird | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } ∈ ∪ ( 𝑅1 “ On ) ) |
| 81 | rankuni2b | ⊢ ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } ) = ∪ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } ( rank ‘ 𝑧 ) ) | |
| 82 | 80 81 | syl | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } ) = ∪ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } ( rank ‘ 𝑧 ) ) |
| 83 | 66 82 | eqtr3id | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) = ∪ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } ( rank ‘ 𝑧 ) ) |
| 84 | fvex | ⊢ ( rank ‘ 𝑧 ) ∈ V | |
| 85 | 84 | dfiun2 | ⊢ ∪ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } ( rank ‘ 𝑧 ) = ∪ { 𝑤 ∣ ∃ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } 𝑤 = ( rank ‘ 𝑧 ) } |
| 86 | fveq2 | ⊢ ( 𝑧 = { 𝑥 } → ( rank ‘ 𝑧 ) = ( rank ‘ { 𝑥 } ) ) | |
| 87 | 62 86 | abrexco | ⊢ { 𝑤 ∣ ∃ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } 𝑤 = ( rank ‘ 𝑧 ) } = { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) } |
| 88 | 87 | unieqi | ⊢ ∪ { 𝑤 ∣ ∃ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } 𝑤 = ( rank ‘ 𝑧 ) } = ∪ { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) } |
| 89 | 85 88 | eqtri | ⊢ ∪ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } ( rank ‘ 𝑧 ) = ∪ { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) } |
| 90 | 83 89 | eqtr2di | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ∪ { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) } = ( rank ‘ 𝐴 ) ) |
| 91 | 46 90 | syl | ⊢ ( Lim ( rank ‘ 𝐴 ) → ∪ { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) } = ( rank ‘ 𝐴 ) ) |
| 92 | fvex | ⊢ ( rank ‘ 𝐴 ) ∈ V | |
| 93 | 92 | cfslb | ⊢ ( ( Lim ( rank ‘ 𝐴 ) ∧ { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) } ⊆ ( rank ‘ 𝐴 ) ∧ ∪ { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) } = ( rank ‘ 𝐴 ) ) → ( cf ‘ ( rank ‘ 𝐴 ) ) ≼ { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) } ) |
| 94 | 61 91 93 | mpd3an23 | ⊢ ( Lim ( rank ‘ 𝐴 ) → ( cf ‘ ( rank ‘ 𝐴 ) ) ≼ { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) } ) |
| 95 | 2fveq3 | ⊢ ( 𝑦 = 𝐴 → ( cf ‘ ( rank ‘ 𝑦 ) ) = ( cf ‘ ( rank ‘ 𝐴 ) ) ) | |
| 96 | breq12 | ⊢ ( ( 𝑦 = 𝐴 ∧ ( cf ‘ ( rank ‘ 𝑦 ) ) = ( cf ‘ ( rank ‘ 𝐴 ) ) ) → ( 𝑦 ≺ ( cf ‘ ( rank ‘ 𝑦 ) ) ↔ 𝐴 ≺ ( cf ‘ ( rank ‘ 𝐴 ) ) ) ) | |
| 97 | 95 96 | mpdan | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ≺ ( cf ‘ ( rank ‘ 𝑦 ) ) ↔ 𝐴 ≺ ( cf ‘ ( rank ‘ 𝐴 ) ) ) ) |
| 98 | rexeq | ⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑥 ∈ 𝑦 𝑤 = ( rank ‘ { 𝑥 } ) ↔ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) ) ) | |
| 99 | 98 | abbidv | ⊢ ( 𝑦 = 𝐴 → { 𝑤 ∣ ∃ 𝑥 ∈ 𝑦 𝑤 = ( rank ‘ { 𝑥 } ) } = { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) } ) |
| 100 | breq12 | ⊢ ( ( { 𝑤 ∣ ∃ 𝑥 ∈ 𝑦 𝑤 = ( rank ‘ { 𝑥 } ) } = { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) } ∧ 𝑦 = 𝐴 ) → ( { 𝑤 ∣ ∃ 𝑥 ∈ 𝑦 𝑤 = ( rank ‘ { 𝑥 } ) } ≼ 𝑦 ↔ { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) } ≼ 𝐴 ) ) | |
| 101 | 99 100 | mpancom | ⊢ ( 𝑦 = 𝐴 → ( { 𝑤 ∣ ∃ 𝑥 ∈ 𝑦 𝑤 = ( rank ‘ { 𝑥 } ) } ≼ 𝑦 ↔ { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) } ≼ 𝐴 ) ) |
| 102 | 97 101 | imbi12d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 ≺ ( cf ‘ ( rank ‘ 𝑦 ) ) → { 𝑤 ∣ ∃ 𝑥 ∈ 𝑦 𝑤 = ( rank ‘ { 𝑥 } ) } ≼ 𝑦 ) ↔ ( 𝐴 ≺ ( cf ‘ ( rank ‘ 𝐴 ) ) → { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) } ≼ 𝐴 ) ) ) |
| 103 | eqid | ⊢ ( 𝑥 ∈ 𝑦 ↦ ( rank ‘ { 𝑥 } ) ) = ( 𝑥 ∈ 𝑦 ↦ ( rank ‘ { 𝑥 } ) ) | |
| 104 | 103 | rnmpt | ⊢ ran ( 𝑥 ∈ 𝑦 ↦ ( rank ‘ { 𝑥 } ) ) = { 𝑤 ∣ ∃ 𝑥 ∈ 𝑦 𝑤 = ( rank ‘ { 𝑥 } ) } |
| 105 | cfon | ⊢ ( cf ‘ ( rank ‘ 𝑦 ) ) ∈ On | |
| 106 | sdomdom | ⊢ ( 𝑦 ≺ ( cf ‘ ( rank ‘ 𝑦 ) ) → 𝑦 ≼ ( cf ‘ ( rank ‘ 𝑦 ) ) ) | |
| 107 | ondomen | ⊢ ( ( ( cf ‘ ( rank ‘ 𝑦 ) ) ∈ On ∧ 𝑦 ≼ ( cf ‘ ( rank ‘ 𝑦 ) ) ) → 𝑦 ∈ dom card ) | |
| 108 | 105 106 107 | sylancr | ⊢ ( 𝑦 ≺ ( cf ‘ ( rank ‘ 𝑦 ) ) → 𝑦 ∈ dom card ) |
| 109 | fvex | ⊢ ( rank ‘ { 𝑥 } ) ∈ V | |
| 110 | 109 103 | fnmpti | ⊢ ( 𝑥 ∈ 𝑦 ↦ ( rank ‘ { 𝑥 } ) ) Fn 𝑦 |
| 111 | dffn4 | ⊢ ( ( 𝑥 ∈ 𝑦 ↦ ( rank ‘ { 𝑥 } ) ) Fn 𝑦 ↔ ( 𝑥 ∈ 𝑦 ↦ ( rank ‘ { 𝑥 } ) ) : 𝑦 –onto→ ran ( 𝑥 ∈ 𝑦 ↦ ( rank ‘ { 𝑥 } ) ) ) | |
| 112 | 110 111 | mpbi | ⊢ ( 𝑥 ∈ 𝑦 ↦ ( rank ‘ { 𝑥 } ) ) : 𝑦 –onto→ ran ( 𝑥 ∈ 𝑦 ↦ ( rank ‘ { 𝑥 } ) ) |
| 113 | fodomnum | ⊢ ( 𝑦 ∈ dom card → ( ( 𝑥 ∈ 𝑦 ↦ ( rank ‘ { 𝑥 } ) ) : 𝑦 –onto→ ran ( 𝑥 ∈ 𝑦 ↦ ( rank ‘ { 𝑥 } ) ) → ran ( 𝑥 ∈ 𝑦 ↦ ( rank ‘ { 𝑥 } ) ) ≼ 𝑦 ) ) | |
| 114 | 108 112 113 | mpisyl | ⊢ ( 𝑦 ≺ ( cf ‘ ( rank ‘ 𝑦 ) ) → ran ( 𝑥 ∈ 𝑦 ↦ ( rank ‘ { 𝑥 } ) ) ≼ 𝑦 ) |
| 115 | 104 114 | eqbrtrrid | ⊢ ( 𝑦 ≺ ( cf ‘ ( rank ‘ 𝑦 ) ) → { 𝑤 ∣ ∃ 𝑥 ∈ 𝑦 𝑤 = ( rank ‘ { 𝑥 } ) } ≼ 𝑦 ) |
| 116 | 102 115 | vtoclg | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( 𝐴 ≺ ( cf ‘ ( rank ‘ 𝐴 ) ) → { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) } ≼ 𝐴 ) ) |
| 117 | 46 116 | syl | ⊢ ( Lim ( rank ‘ 𝐴 ) → ( 𝐴 ≺ ( cf ‘ ( rank ‘ 𝐴 ) ) → { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) } ≼ 𝐴 ) ) |
| 118 | domtr | ⊢ ( ( ( cf ‘ ( rank ‘ 𝐴 ) ) ≼ { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) } ∧ { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) } ≼ 𝐴 ) → ( cf ‘ ( rank ‘ 𝐴 ) ) ≼ 𝐴 ) | |
| 119 | 118 40 | syl | ⊢ ( ( ( cf ‘ ( rank ‘ 𝐴 ) ) ≼ { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) } ∧ { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) } ≼ 𝐴 ) → ¬ 𝐴 ≺ ( cf ‘ ( rank ‘ 𝐴 ) ) ) |
| 120 | 94 117 119 | syl6an | ⊢ ( Lim ( rank ‘ 𝐴 ) → ( 𝐴 ≺ ( cf ‘ ( rank ‘ 𝐴 ) ) → ¬ 𝐴 ≺ ( cf ‘ ( rank ‘ 𝐴 ) ) ) ) |
| 121 | 120 | pm2.01d | ⊢ ( Lim ( rank ‘ 𝐴 ) → ¬ 𝐴 ≺ ( cf ‘ ( rank ‘ 𝐴 ) ) ) |
| 122 | 121 | adantl | ⊢ ( ( ( rank ‘ 𝐴 ) ∈ V ∧ Lim ( rank ‘ 𝐴 ) ) → ¬ 𝐴 ≺ ( cf ‘ ( rank ‘ 𝐴 ) ) ) |
| 123 | 9 41 122 | 3jaoi | ⊢ ( ( ( rank ‘ 𝐴 ) = ∅ ∨ ∃ 𝑥 ∈ On ( rank ‘ 𝐴 ) = suc 𝑥 ∨ ( ( rank ‘ 𝐴 ) ∈ V ∧ Lim ( rank ‘ 𝐴 ) ) ) → ¬ 𝐴 ≺ ( cf ‘ ( rank ‘ 𝐴 ) ) ) |
| 124 | 3 123 | ax-mp | ⊢ ¬ 𝐴 ≺ ( cf ‘ ( rank ‘ 𝐴 ) ) |