This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The rank of a singleton. Theorem 15.17(v) of Monk1 p. 112. (Contributed by Mario Carneiro, 10-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ranksnb | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ { 𝐴 } ) = suc ( rank ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝑦 = 𝐴 → ( rank ‘ 𝑦 ) = ( rank ‘ 𝐴 ) ) | |
| 2 | 1 | eleq1d | ⊢ ( 𝑦 = 𝐴 → ( ( rank ‘ 𝑦 ) ∈ 𝑥 ↔ ( rank ‘ 𝐴 ) ∈ 𝑥 ) ) |
| 3 | 2 | ralsng | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( ∀ 𝑦 ∈ { 𝐴 } ( rank ‘ 𝑦 ) ∈ 𝑥 ↔ ( rank ‘ 𝐴 ) ∈ 𝑥 ) ) |
| 4 | 3 | rabbidv | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ { 𝐴 } ( rank ‘ 𝑦 ) ∈ 𝑥 } = { 𝑥 ∈ On ∣ ( rank ‘ 𝐴 ) ∈ 𝑥 } ) |
| 5 | 4 | inteqd | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ∩ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ { 𝐴 } ( rank ‘ 𝑦 ) ∈ 𝑥 } = ∩ { 𝑥 ∈ On ∣ ( rank ‘ 𝐴 ) ∈ 𝑥 } ) |
| 6 | snwf | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → { 𝐴 } ∈ ∪ ( 𝑅1 “ On ) ) | |
| 7 | rankval3b | ⊢ ( { 𝐴 } ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ { 𝐴 } ) = ∩ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ { 𝐴 } ( rank ‘ 𝑦 ) ∈ 𝑥 } ) | |
| 8 | 6 7 | syl | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ { 𝐴 } ) = ∩ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ { 𝐴 } ( rank ‘ 𝑦 ) ∈ 𝑥 } ) |
| 9 | rankon | ⊢ ( rank ‘ 𝐴 ) ∈ On | |
| 10 | onsucmin | ⊢ ( ( rank ‘ 𝐴 ) ∈ On → suc ( rank ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ ( rank ‘ 𝐴 ) ∈ 𝑥 } ) | |
| 11 | 9 10 | mp1i | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → suc ( rank ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ ( rank ‘ 𝐴 ) ∈ 𝑥 } ) |
| 12 | 5 8 11 | 3eqtr4d | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ { 𝐴 } ) = suc ( rank ‘ 𝐴 ) ) |