This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The membership relation is inherited by the rank function. Proposition 9.16 of TakeutiZaring p. 79. (Contributed by NM, 4-Oct-2003) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rankelb | ⊢ ( 𝐵 ∈ ∪ ( 𝑅1 “ On ) → ( 𝐴 ∈ 𝐵 → ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1elssi | ⊢ ( 𝐵 ∈ ∪ ( 𝑅1 “ On ) → 𝐵 ⊆ ∪ ( 𝑅1 “ On ) ) | |
| 2 | 1 | sseld | ⊢ ( 𝐵 ∈ ∪ ( 𝑅1 “ On ) → ( 𝐴 ∈ 𝐵 → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) ) |
| 3 | rankidn | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ¬ 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) | |
| 4 | 2 3 | syl6 | ⊢ ( 𝐵 ∈ ∪ ( 𝑅1 “ On ) → ( 𝐴 ∈ 𝐵 → ¬ 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) ) |
| 5 | 4 | imp | ⊢ ( ( 𝐵 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐴 ∈ 𝐵 ) → ¬ 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
| 6 | rankon | ⊢ ( rank ‘ 𝐵 ) ∈ On | |
| 7 | rankon | ⊢ ( rank ‘ 𝐴 ) ∈ On | |
| 8 | ontri1 | ⊢ ( ( ( rank ‘ 𝐵 ) ∈ On ∧ ( rank ‘ 𝐴 ) ∈ On ) → ( ( rank ‘ 𝐵 ) ⊆ ( rank ‘ 𝐴 ) ↔ ¬ ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐵 ) ) ) | |
| 9 | 6 7 8 | mp2an | ⊢ ( ( rank ‘ 𝐵 ) ⊆ ( rank ‘ 𝐴 ) ↔ ¬ ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐵 ) ) |
| 10 | rankdmr1 | ⊢ ( rank ‘ 𝐵 ) ∈ dom 𝑅1 | |
| 11 | rankdmr1 | ⊢ ( rank ‘ 𝐴 ) ∈ dom 𝑅1 | |
| 12 | r1ord3g | ⊢ ( ( ( rank ‘ 𝐵 ) ∈ dom 𝑅1 ∧ ( rank ‘ 𝐴 ) ∈ dom 𝑅1 ) → ( ( rank ‘ 𝐵 ) ⊆ ( rank ‘ 𝐴 ) → ( 𝑅1 ‘ ( rank ‘ 𝐵 ) ) ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) ) | |
| 13 | 10 11 12 | mp2an | ⊢ ( ( rank ‘ 𝐵 ) ⊆ ( rank ‘ 𝐴 ) → ( 𝑅1 ‘ ( rank ‘ 𝐵 ) ) ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
| 14 | r1rankidb | ⊢ ( 𝐵 ∈ ∪ ( 𝑅1 “ On ) → 𝐵 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐵 ) ) ) | |
| 15 | 14 | sselda | ⊢ ( ( 𝐵 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐵 ) ) ) |
| 16 | ssel | ⊢ ( ( 𝑅1 ‘ ( rank ‘ 𝐵 ) ) ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) → ( 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐵 ) ) → 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) ) | |
| 17 | 13 15 16 | syl2imc | ⊢ ( ( 𝐵 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐴 ∈ 𝐵 ) → ( ( rank ‘ 𝐵 ) ⊆ ( rank ‘ 𝐴 ) → 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) ) |
| 18 | 9 17 | biimtrrid | ⊢ ( ( 𝐵 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐴 ∈ 𝐵 ) → ( ¬ ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐵 ) → 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) ) |
| 19 | 5 18 | mt3d | ⊢ ( ( 𝐵 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐴 ∈ 𝐵 ) → ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐵 ) ) |
| 20 | 19 | ex | ⊢ ( 𝐵 ∈ ∪ ( 𝑅1 “ On ) → ( 𝐴 ∈ 𝐵 → ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐵 ) ) ) |