This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: ( R1A ) for A a strongly inaccessible cardinal is a Tarski class. (Contributed by Mario Carneiro, 8-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inatsk | ⊢ ( 𝐴 ∈ Inacc → ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inawina | ⊢ ( 𝐴 ∈ Inacc → 𝐴 ∈ Inaccw ) | |
| 2 | winaon | ⊢ ( 𝐴 ∈ Inaccw → 𝐴 ∈ On ) | |
| 3 | winalim | ⊢ ( 𝐴 ∈ Inaccw → Lim 𝐴 ) | |
| 4 | r1lim | ⊢ ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) → ( 𝑅1 ‘ 𝐴 ) = ∪ 𝑦 ∈ 𝐴 ( 𝑅1 ‘ 𝑦 ) ) | |
| 5 | 2 3 4 | syl2anc | ⊢ ( 𝐴 ∈ Inaccw → ( 𝑅1 ‘ 𝐴 ) = ∪ 𝑦 ∈ 𝐴 ( 𝑅1 ‘ 𝑦 ) ) |
| 6 | 5 | eleq2d | ⊢ ( 𝐴 ∈ Inaccw → ( 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ↔ 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ( 𝑅1 ‘ 𝑦 ) ) ) |
| 7 | eliun | ⊢ ( 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ( 𝑅1 ‘ 𝑦 ) ↔ ∃ 𝑦 ∈ 𝐴 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) | |
| 8 | 6 7 | bitrdi | ⊢ ( 𝐴 ∈ Inaccw → ( 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ↔ ∃ 𝑦 ∈ 𝐴 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 9 | onelon | ⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ On ) | |
| 10 | 2 9 | sylan | ⊢ ( ( 𝐴 ∈ Inaccw ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ On ) |
| 11 | r1pw | ⊢ ( 𝑦 ∈ On → ( 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ↔ 𝒫 𝑥 ∈ ( 𝑅1 ‘ suc 𝑦 ) ) ) | |
| 12 | 10 11 | syl | ⊢ ( ( 𝐴 ∈ Inaccw ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ↔ 𝒫 𝑥 ∈ ( 𝑅1 ‘ suc 𝑦 ) ) ) |
| 13 | limsuc | ⊢ ( Lim 𝐴 → ( 𝑦 ∈ 𝐴 ↔ suc 𝑦 ∈ 𝐴 ) ) | |
| 14 | 3 13 | syl | ⊢ ( 𝐴 ∈ Inaccw → ( 𝑦 ∈ 𝐴 ↔ suc 𝑦 ∈ 𝐴 ) ) |
| 15 | r1ord2 | ⊢ ( 𝐴 ∈ On → ( suc 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ suc 𝑦 ) ⊆ ( 𝑅1 ‘ 𝐴 ) ) ) | |
| 16 | 2 15 | syl | ⊢ ( 𝐴 ∈ Inaccw → ( suc 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ suc 𝑦 ) ⊆ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 17 | 14 16 | sylbid | ⊢ ( 𝐴 ∈ Inaccw → ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ suc 𝑦 ) ⊆ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 18 | 17 | imp | ⊢ ( ( 𝐴 ∈ Inaccw ∧ 𝑦 ∈ 𝐴 ) → ( 𝑅1 ‘ suc 𝑦 ) ⊆ ( 𝑅1 ‘ 𝐴 ) ) |
| 19 | 18 | sseld | ⊢ ( ( 𝐴 ∈ Inaccw ∧ 𝑦 ∈ 𝐴 ) → ( 𝒫 𝑥 ∈ ( 𝑅1 ‘ suc 𝑦 ) → 𝒫 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 20 | 12 19 | sylbid | ⊢ ( ( 𝐴 ∈ Inaccw ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) → 𝒫 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 21 | 20 | rexlimdva | ⊢ ( 𝐴 ∈ Inaccw → ( ∃ 𝑦 ∈ 𝐴 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) → 𝒫 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 22 | 8 21 | sylbid | ⊢ ( 𝐴 ∈ Inaccw → ( 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) → 𝒫 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 23 | 1 22 | syl | ⊢ ( 𝐴 ∈ Inacc → ( 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) → 𝒫 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 24 | 23 | imp | ⊢ ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) → 𝒫 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) |
| 25 | elssuni | ⊢ ( 𝒫 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) → 𝒫 𝑥 ⊆ ∪ ( 𝑅1 ‘ 𝐴 ) ) | |
| 26 | r1tr2 | ⊢ ∪ ( 𝑅1 ‘ 𝐴 ) ⊆ ( 𝑅1 ‘ 𝐴 ) | |
| 27 | 25 26 | sstrdi | ⊢ ( 𝒫 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) → 𝒫 𝑥 ⊆ ( 𝑅1 ‘ 𝐴 ) ) |
| 28 | 24 27 | jccil | ⊢ ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) → ( 𝒫 𝑥 ⊆ ( 𝑅1 ‘ 𝐴 ) ∧ 𝒫 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 29 | 28 | ralrimiva | ⊢ ( 𝐴 ∈ Inacc → ∀ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ( 𝒫 𝑥 ⊆ ( 𝑅1 ‘ 𝐴 ) ∧ 𝒫 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 30 | 1 2 | syl | ⊢ ( 𝐴 ∈ Inacc → 𝐴 ∈ On ) |
| 31 | r1suc | ⊢ ( 𝐴 ∈ On → ( 𝑅1 ‘ suc 𝐴 ) = 𝒫 ( 𝑅1 ‘ 𝐴 ) ) | |
| 32 | 31 | eleq2d | ⊢ ( 𝐴 ∈ On → ( 𝑥 ∈ ( 𝑅1 ‘ suc 𝐴 ) ↔ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) ) |
| 33 | 30 32 | syl | ⊢ ( 𝐴 ∈ Inacc → ( 𝑥 ∈ ( 𝑅1 ‘ suc 𝐴 ) ↔ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) ) |
| 34 | rankr1ai | ⊢ ( 𝑥 ∈ ( 𝑅1 ‘ suc 𝐴 ) → ( rank ‘ 𝑥 ) ∈ suc 𝐴 ) | |
| 35 | 33 34 | biimtrrdi | ⊢ ( 𝐴 ∈ Inacc → ( 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) → ( rank ‘ 𝑥 ) ∈ suc 𝐴 ) ) |
| 36 | 35 | imp | ⊢ ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) → ( rank ‘ 𝑥 ) ∈ suc 𝐴 ) |
| 37 | fvex | ⊢ ( rank ‘ 𝑥 ) ∈ V | |
| 38 | 37 | elsuc | ⊢ ( ( rank ‘ 𝑥 ) ∈ suc 𝐴 ↔ ( ( rank ‘ 𝑥 ) ∈ 𝐴 ∨ ( rank ‘ 𝑥 ) = 𝐴 ) ) |
| 39 | 36 38 | sylib | ⊢ ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) → ( ( rank ‘ 𝑥 ) ∈ 𝐴 ∨ ( rank ‘ 𝑥 ) = 𝐴 ) ) |
| 40 | 39 | orcomd | ⊢ ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) → ( ( rank ‘ 𝑥 ) = 𝐴 ∨ ( rank ‘ 𝑥 ) ∈ 𝐴 ) ) |
| 41 | fvex | ⊢ ( 𝑅1 ‘ 𝐴 ) ∈ V | |
| 42 | elpwi | ⊢ ( 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) → 𝑥 ⊆ ( 𝑅1 ‘ 𝐴 ) ) | |
| 43 | 42 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) ∧ ( rank ‘ 𝑥 ) = 𝐴 ) → 𝑥 ⊆ ( 𝑅1 ‘ 𝐴 ) ) |
| 44 | ssdomg | ⊢ ( ( 𝑅1 ‘ 𝐴 ) ∈ V → ( 𝑥 ⊆ ( 𝑅1 ‘ 𝐴 ) → 𝑥 ≼ ( 𝑅1 ‘ 𝐴 ) ) ) | |
| 45 | 41 43 44 | mpsyl | ⊢ ( ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) ∧ ( rank ‘ 𝑥 ) = 𝐴 ) → 𝑥 ≼ ( 𝑅1 ‘ 𝐴 ) ) |
| 46 | rankcf | ⊢ ¬ 𝑥 ≺ ( cf ‘ ( rank ‘ 𝑥 ) ) | |
| 47 | fveq2 | ⊢ ( ( rank ‘ 𝑥 ) = 𝐴 → ( cf ‘ ( rank ‘ 𝑥 ) ) = ( cf ‘ 𝐴 ) ) | |
| 48 | elina | ⊢ ( 𝐴 ∈ Inacc ↔ ( 𝐴 ≠ ∅ ∧ ( cf ‘ 𝐴 ) = 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴 ) ) | |
| 49 | 48 | simp2bi | ⊢ ( 𝐴 ∈ Inacc → ( cf ‘ 𝐴 ) = 𝐴 ) |
| 50 | 47 49 | sylan9eqr | ⊢ ( ( 𝐴 ∈ Inacc ∧ ( rank ‘ 𝑥 ) = 𝐴 ) → ( cf ‘ ( rank ‘ 𝑥 ) ) = 𝐴 ) |
| 51 | 50 | breq2d | ⊢ ( ( 𝐴 ∈ Inacc ∧ ( rank ‘ 𝑥 ) = 𝐴 ) → ( 𝑥 ≺ ( cf ‘ ( rank ‘ 𝑥 ) ) ↔ 𝑥 ≺ 𝐴 ) ) |
| 52 | 46 51 | mtbii | ⊢ ( ( 𝐴 ∈ Inacc ∧ ( rank ‘ 𝑥 ) = 𝐴 ) → ¬ 𝑥 ≺ 𝐴 ) |
| 53 | inar1 | ⊢ ( 𝐴 ∈ Inacc → ( 𝑅1 ‘ 𝐴 ) ≈ 𝐴 ) | |
| 54 | sdomentr | ⊢ ( ( 𝑥 ≺ ( 𝑅1 ‘ 𝐴 ) ∧ ( 𝑅1 ‘ 𝐴 ) ≈ 𝐴 ) → 𝑥 ≺ 𝐴 ) | |
| 55 | 54 | expcom | ⊢ ( ( 𝑅1 ‘ 𝐴 ) ≈ 𝐴 → ( 𝑥 ≺ ( 𝑅1 ‘ 𝐴 ) → 𝑥 ≺ 𝐴 ) ) |
| 56 | 53 55 | syl | ⊢ ( 𝐴 ∈ Inacc → ( 𝑥 ≺ ( 𝑅1 ‘ 𝐴 ) → 𝑥 ≺ 𝐴 ) ) |
| 57 | 56 | adantr | ⊢ ( ( 𝐴 ∈ Inacc ∧ ( rank ‘ 𝑥 ) = 𝐴 ) → ( 𝑥 ≺ ( 𝑅1 ‘ 𝐴 ) → 𝑥 ≺ 𝐴 ) ) |
| 58 | 52 57 | mtod | ⊢ ( ( 𝐴 ∈ Inacc ∧ ( rank ‘ 𝑥 ) = 𝐴 ) → ¬ 𝑥 ≺ ( 𝑅1 ‘ 𝐴 ) ) |
| 59 | 58 | adantlr | ⊢ ( ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) ∧ ( rank ‘ 𝑥 ) = 𝐴 ) → ¬ 𝑥 ≺ ( 𝑅1 ‘ 𝐴 ) ) |
| 60 | bren2 | ⊢ ( 𝑥 ≈ ( 𝑅1 ‘ 𝐴 ) ↔ ( 𝑥 ≼ ( 𝑅1 ‘ 𝐴 ) ∧ ¬ 𝑥 ≺ ( 𝑅1 ‘ 𝐴 ) ) ) | |
| 61 | 45 59 60 | sylanbrc | ⊢ ( ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) ∧ ( rank ‘ 𝑥 ) = 𝐴 ) → 𝑥 ≈ ( 𝑅1 ‘ 𝐴 ) ) |
| 62 | 61 | ex | ⊢ ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) → ( ( rank ‘ 𝑥 ) = 𝐴 → 𝑥 ≈ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 63 | r1elwf | ⊢ ( 𝑥 ∈ ( 𝑅1 ‘ suc 𝐴 ) → 𝑥 ∈ ∪ ( 𝑅1 “ On ) ) | |
| 64 | 33 63 | biimtrrdi | ⊢ ( 𝐴 ∈ Inacc → ( 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) → 𝑥 ∈ ∪ ( 𝑅1 “ On ) ) ) |
| 65 | 64 | imp | ⊢ ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) → 𝑥 ∈ ∪ ( 𝑅1 “ On ) ) |
| 66 | r1fnon | ⊢ 𝑅1 Fn On | |
| 67 | 66 | fndmi | ⊢ dom 𝑅1 = On |
| 68 | 30 67 | eleqtrrdi | ⊢ ( 𝐴 ∈ Inacc → 𝐴 ∈ dom 𝑅1 ) |
| 69 | 68 | adantr | ⊢ ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) → 𝐴 ∈ dom 𝑅1 ) |
| 70 | rankr1ag | ⊢ ( ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐴 ∈ dom 𝑅1 ) → ( 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ↔ ( rank ‘ 𝑥 ) ∈ 𝐴 ) ) | |
| 71 | 65 69 70 | syl2anc | ⊢ ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) → ( 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ↔ ( rank ‘ 𝑥 ) ∈ 𝐴 ) ) |
| 72 | 71 | biimprd | ⊢ ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) → ( ( rank ‘ 𝑥 ) ∈ 𝐴 → 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 73 | 62 72 | orim12d | ⊢ ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) → ( ( ( rank ‘ 𝑥 ) = 𝐴 ∨ ( rank ‘ 𝑥 ) ∈ 𝐴 ) → ( 𝑥 ≈ ( 𝑅1 ‘ 𝐴 ) ∨ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) ) |
| 74 | 40 73 | mpd | ⊢ ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ) → ( 𝑥 ≈ ( 𝑅1 ‘ 𝐴 ) ∨ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 75 | 74 | ralrimiva | ⊢ ( 𝐴 ∈ Inacc → ∀ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ( 𝑥 ≈ ( 𝑅1 ‘ 𝐴 ) ∨ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 76 | eltsk2g | ⊢ ( ( 𝑅1 ‘ 𝐴 ) ∈ V → ( ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ↔ ( ∀ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ( 𝒫 𝑥 ⊆ ( 𝑅1 ‘ 𝐴 ) ∧ 𝒫 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ∧ ∀ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ( 𝑥 ≈ ( 𝑅1 ‘ 𝐴 ) ∨ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) ) ) | |
| 77 | 41 76 | ax-mp | ⊢ ( ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ↔ ( ∀ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ( 𝒫 𝑥 ⊆ ( 𝑅1 ‘ 𝐴 ) ∧ 𝒫 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ∧ ∀ 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ( 𝑥 ≈ ( 𝑅1 ‘ 𝐴 ) ∨ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) ) |
| 78 | 29 75 77 | sylanbrc | ⊢ ( 𝐴 ∈ Inacc → ( 𝑅1 ‘ 𝐴 ) ∈ Tarski ) |