This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Strict dominance over 0 is the same as dominance over 1. For a shorter proof requiring ax-un , see 0sdom1domALT . (Contributed by NM, 28-Sep-2004) Avoid ax-un . (Revised by BTernaryTau, 7-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0sdom1dom | ⊢ ( ∅ ≺ 𝐴 ↔ 1o ≼ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relsdom | ⊢ Rel ≺ | |
| 2 | 1 | brrelex2i | ⊢ ( ∅ ≺ 𝐴 → 𝐴 ∈ V ) |
| 3 | reldom | ⊢ Rel ≼ | |
| 4 | 3 | brrelex2i | ⊢ ( 1o ≼ 𝐴 → 𝐴 ∈ V ) |
| 5 | 0sdomg | ⊢ ( 𝐴 ∈ V → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) | |
| 6 | n0 | ⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) | |
| 7 | snssi | ⊢ ( 𝑥 ∈ 𝐴 → { 𝑥 } ⊆ 𝐴 ) | |
| 8 | df1o2 | ⊢ 1o = { ∅ } | |
| 9 | 0ex | ⊢ ∅ ∈ V | |
| 10 | vex | ⊢ 𝑥 ∈ V | |
| 11 | en2sn | ⊢ ( ( ∅ ∈ V ∧ 𝑥 ∈ V ) → { ∅ } ≈ { 𝑥 } ) | |
| 12 | 9 10 11 | mp2an | ⊢ { ∅ } ≈ { 𝑥 } |
| 13 | 8 12 | eqbrtri | ⊢ 1o ≈ { 𝑥 } |
| 14 | endom | ⊢ ( 1o ≈ { 𝑥 } → 1o ≼ { 𝑥 } ) | |
| 15 | 13 14 | ax-mp | ⊢ 1o ≼ { 𝑥 } |
| 16 | domssr | ⊢ ( ( 𝐴 ∈ V ∧ { 𝑥 } ⊆ 𝐴 ∧ 1o ≼ { 𝑥 } ) → 1o ≼ 𝐴 ) | |
| 17 | 15 16 | mp3an3 | ⊢ ( ( 𝐴 ∈ V ∧ { 𝑥 } ⊆ 𝐴 ) → 1o ≼ 𝐴 ) |
| 18 | 17 | ex | ⊢ ( 𝐴 ∈ V → ( { 𝑥 } ⊆ 𝐴 → 1o ≼ 𝐴 ) ) |
| 19 | 7 18 | syl5 | ⊢ ( 𝐴 ∈ V → ( 𝑥 ∈ 𝐴 → 1o ≼ 𝐴 ) ) |
| 20 | 19 | exlimdv | ⊢ ( 𝐴 ∈ V → ( ∃ 𝑥 𝑥 ∈ 𝐴 → 1o ≼ 𝐴 ) ) |
| 21 | 6 20 | biimtrid | ⊢ ( 𝐴 ∈ V → ( 𝐴 ≠ ∅ → 1o ≼ 𝐴 ) ) |
| 22 | 1n0 | ⊢ 1o ≠ ∅ | |
| 23 | dom0 | ⊢ ( 1o ≼ ∅ ↔ 1o = ∅ ) | |
| 24 | 22 23 | nemtbir | ⊢ ¬ 1o ≼ ∅ |
| 25 | breq2 | ⊢ ( 𝐴 = ∅ → ( 1o ≼ 𝐴 ↔ 1o ≼ ∅ ) ) | |
| 26 | 24 25 | mtbiri | ⊢ ( 𝐴 = ∅ → ¬ 1o ≼ 𝐴 ) |
| 27 | 26 | necon2ai | ⊢ ( 1o ≼ 𝐴 → 𝐴 ≠ ∅ ) |
| 28 | 21 27 | impbid1 | ⊢ ( 𝐴 ∈ V → ( 𝐴 ≠ ∅ ↔ 1o ≼ 𝐴 ) ) |
| 29 | 5 28 | bitrd | ⊢ ( 𝐴 ∈ V → ( ∅ ≺ 𝐴 ↔ 1o ≼ 𝐴 ) ) |
| 30 | 2 4 29 | pm5.21nii | ⊢ ( ∅ ≺ 𝐴 ↔ 1o ≼ 𝐴 ) |