This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition of two image maps C ( y ) and B ( w ) . (Contributed by NM, 27-May-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abrexco.1 | ⊢ 𝐵 ∈ V | |
| abrexco.2 | ⊢ ( 𝑦 = 𝐵 → 𝐶 = 𝐷 ) | ||
| Assertion | abrexco | ⊢ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ 𝐴 𝑧 = 𝐵 } 𝑥 = 𝐶 } = { 𝑥 ∣ ∃ 𝑤 ∈ 𝐴 𝑥 = 𝐷 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abrexco.1 | ⊢ 𝐵 ∈ V | |
| 2 | abrexco.2 | ⊢ ( 𝑦 = 𝐵 → 𝐶 = 𝐷 ) | |
| 3 | df-rex | ⊢ ( ∃ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ 𝐴 𝑧 = 𝐵 } 𝑥 = 𝐶 ↔ ∃ 𝑦 ( 𝑦 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ 𝐴 𝑧 = 𝐵 } ∧ 𝑥 = 𝐶 ) ) | |
| 4 | vex | ⊢ 𝑦 ∈ V | |
| 5 | eqeq1 | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 = 𝐵 ↔ 𝑦 = 𝐵 ) ) | |
| 6 | 5 | rexbidv | ⊢ ( 𝑧 = 𝑦 → ( ∃ 𝑤 ∈ 𝐴 𝑧 = 𝐵 ↔ ∃ 𝑤 ∈ 𝐴 𝑦 = 𝐵 ) ) |
| 7 | 4 6 | elab | ⊢ ( 𝑦 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ 𝐴 𝑧 = 𝐵 } ↔ ∃ 𝑤 ∈ 𝐴 𝑦 = 𝐵 ) |
| 8 | 7 | anbi1i | ⊢ ( ( 𝑦 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ 𝐴 𝑧 = 𝐵 } ∧ 𝑥 = 𝐶 ) ↔ ( ∃ 𝑤 ∈ 𝐴 𝑦 = 𝐵 ∧ 𝑥 = 𝐶 ) ) |
| 9 | r19.41v | ⊢ ( ∃ 𝑤 ∈ 𝐴 ( 𝑦 = 𝐵 ∧ 𝑥 = 𝐶 ) ↔ ( ∃ 𝑤 ∈ 𝐴 𝑦 = 𝐵 ∧ 𝑥 = 𝐶 ) ) | |
| 10 | 8 9 | bitr4i | ⊢ ( ( 𝑦 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ 𝐴 𝑧 = 𝐵 } ∧ 𝑥 = 𝐶 ) ↔ ∃ 𝑤 ∈ 𝐴 ( 𝑦 = 𝐵 ∧ 𝑥 = 𝐶 ) ) |
| 11 | 10 | exbii | ⊢ ( ∃ 𝑦 ( 𝑦 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ 𝐴 𝑧 = 𝐵 } ∧ 𝑥 = 𝐶 ) ↔ ∃ 𝑦 ∃ 𝑤 ∈ 𝐴 ( 𝑦 = 𝐵 ∧ 𝑥 = 𝐶 ) ) |
| 12 | 3 11 | bitri | ⊢ ( ∃ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ 𝐴 𝑧 = 𝐵 } 𝑥 = 𝐶 ↔ ∃ 𝑦 ∃ 𝑤 ∈ 𝐴 ( 𝑦 = 𝐵 ∧ 𝑥 = 𝐶 ) ) |
| 13 | rexcom4 | ⊢ ( ∃ 𝑤 ∈ 𝐴 ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑥 = 𝐶 ) ↔ ∃ 𝑦 ∃ 𝑤 ∈ 𝐴 ( 𝑦 = 𝐵 ∧ 𝑥 = 𝐶 ) ) | |
| 14 | 12 13 | bitr4i | ⊢ ( ∃ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ 𝐴 𝑧 = 𝐵 } 𝑥 = 𝐶 ↔ ∃ 𝑤 ∈ 𝐴 ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑥 = 𝐶 ) ) |
| 15 | 2 | eqeq2d | ⊢ ( 𝑦 = 𝐵 → ( 𝑥 = 𝐶 ↔ 𝑥 = 𝐷 ) ) |
| 16 | 1 15 | ceqsexv | ⊢ ( ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑥 = 𝐶 ) ↔ 𝑥 = 𝐷 ) |
| 17 | 16 | rexbii | ⊢ ( ∃ 𝑤 ∈ 𝐴 ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑥 = 𝐶 ) ↔ ∃ 𝑤 ∈ 𝐴 𝑥 = 𝐷 ) |
| 18 | 14 17 | bitri | ⊢ ( ∃ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ 𝐴 𝑧 = 𝐵 } 𝑥 = 𝐶 ↔ ∃ 𝑤 ∈ 𝐴 𝑥 = 𝐷 ) |
| 19 | 18 | abbii | ⊢ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ 𝐴 𝑧 = 𝐵 } 𝑥 = 𝐶 } = { 𝑥 ∣ ∃ 𝑤 ∈ 𝐴 𝑥 = 𝐷 } |