This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pwfseq . Derive a final contradiction from the function F in pwfseqlem3 . Applying fpwwe2 to it, we get a certain maximal well-ordered subset Z , but the defining property ( Z F ( WZ ) ) e. Z contradicts our assumption on F , so we are reduced to the case of Z finite. This too is a contradiction, though, because Z and its preimage under ( WZ ) are distinct sets of the same cardinality and in a subset relation, which is impossible for finite sets. (Contributed by Mario Carneiro, 31-May-2015) (Proof shortened by Matthew House, 10-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwfseqlem4.g | ⊢ ( 𝜑 → 𝐺 : 𝒫 𝐴 –1-1→ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) | |
| pwfseqlem4.x | ⊢ ( 𝜑 → 𝑋 ⊆ 𝐴 ) | ||
| pwfseqlem4.h | ⊢ ( 𝜑 → 𝐻 : ω –1-1-onto→ 𝑋 ) | ||
| pwfseqlem4.ps | ⊢ ( 𝜓 ↔ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ∧ ω ≼ 𝑥 ) ) | ||
| pwfseqlem4.k | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐾 : ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) –1-1→ 𝑥 ) | ||
| pwfseqlem4.d | ⊢ 𝐷 = ( 𝐺 ‘ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) | ||
| pwfseqlem4.f | ⊢ 𝐹 = ( 𝑥 ∈ V , 𝑟 ∈ V ↦ if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) ) | ||
| pwfseqlem4.w | ⊢ 𝑊 = { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑏 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑏 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑏 ) ) } | ||
| pwfseqlem4.z | ⊢ 𝑍 = ∪ dom 𝑊 | ||
| Assertion | pwfseqlem4 | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwfseqlem4.g | ⊢ ( 𝜑 → 𝐺 : 𝒫 𝐴 –1-1→ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) | |
| 2 | pwfseqlem4.x | ⊢ ( 𝜑 → 𝑋 ⊆ 𝐴 ) | |
| 3 | pwfseqlem4.h | ⊢ ( 𝜑 → 𝐻 : ω –1-1-onto→ 𝑋 ) | |
| 4 | pwfseqlem4.ps | ⊢ ( 𝜓 ↔ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ∧ ω ≼ 𝑥 ) ) | |
| 5 | pwfseqlem4.k | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐾 : ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) –1-1→ 𝑥 ) | |
| 6 | pwfseqlem4.d | ⊢ 𝐷 = ( 𝐺 ‘ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) | |
| 7 | pwfseqlem4.f | ⊢ 𝐹 = ( 𝑥 ∈ V , 𝑟 ∈ V ↦ if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) ) | |
| 8 | pwfseqlem4.w | ⊢ 𝑊 = { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑏 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑏 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑏 ) ) } | |
| 9 | pwfseqlem4.z | ⊢ 𝑍 = ∪ dom 𝑊 | |
| 10 | eqid | ⊢ 𝑍 = 𝑍 | |
| 11 | eqid | ⊢ ( 𝑊 ‘ 𝑍 ) = ( 𝑊 ‘ 𝑍 ) | |
| 12 | 10 11 | pm3.2i | ⊢ ( 𝑍 = 𝑍 ∧ ( 𝑊 ‘ 𝑍 ) = ( 𝑊 ‘ 𝑍 ) ) |
| 13 | omex | ⊢ ω ∈ V | |
| 14 | ovex | ⊢ ( 𝐴 ↑m 𝑛 ) ∈ V | |
| 15 | 13 14 | iunex | ⊢ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ∈ V |
| 16 | f1dmex | ⊢ ( ( 𝐺 : 𝒫 𝐴 –1-1→ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ∧ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ∈ V ) → 𝒫 𝐴 ∈ V ) | |
| 17 | 1 15 16 | sylancl | ⊢ ( 𝜑 → 𝒫 𝐴 ∈ V ) |
| 18 | pwexb | ⊢ ( 𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V ) | |
| 19 | 17 18 | sylibr | ⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 20 | 1 2 3 4 5 6 7 | pwfseqlem4a | ⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ) → ( 𝑎 𝐹 𝑠 ) ∈ 𝐴 ) |
| 21 | 8 19 20 9 | fpwwe2 | ⊢ ( 𝜑 → ( ( 𝑍 𝑊 ( 𝑊 ‘ 𝑍 ) ∧ ( 𝑍 𝐹 ( 𝑊 ‘ 𝑍 ) ) ∈ 𝑍 ) ↔ ( 𝑍 = 𝑍 ∧ ( 𝑊 ‘ 𝑍 ) = ( 𝑊 ‘ 𝑍 ) ) ) ) |
| 22 | 12 21 | mpbiri | ⊢ ( 𝜑 → ( 𝑍 𝑊 ( 𝑊 ‘ 𝑍 ) ∧ ( 𝑍 𝐹 ( 𝑊 ‘ 𝑍 ) ) ∈ 𝑍 ) ) |
| 23 | 22 | simpld | ⊢ ( 𝜑 → 𝑍 𝑊 ( 𝑊 ‘ 𝑍 ) ) |
| 24 | 8 19 | fpwwe2lem2 | ⊢ ( 𝜑 → ( 𝑍 𝑊 ( 𝑊 ‘ 𝑍 ) ↔ ( ( 𝑍 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑍 ) ⊆ ( 𝑍 × 𝑍 ) ) ∧ ( ( 𝑊 ‘ 𝑍 ) We 𝑍 ∧ ∀ 𝑏 ∈ 𝑍 [ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { 𝑏 } ) / 𝑣 ] ( 𝑣 𝐹 ( ( 𝑊 ‘ 𝑍 ) ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑏 ) ) ) ) |
| 25 | 23 24 | mpbid | ⊢ ( 𝜑 → ( ( 𝑍 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑍 ) ⊆ ( 𝑍 × 𝑍 ) ) ∧ ( ( 𝑊 ‘ 𝑍 ) We 𝑍 ∧ ∀ 𝑏 ∈ 𝑍 [ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { 𝑏 } ) / 𝑣 ] ( 𝑣 𝐹 ( ( 𝑊 ‘ 𝑍 ) ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑏 ) ) ) |
| 26 | id | ⊢ ( ( 𝑍 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑍 ) ⊆ ( 𝑍 × 𝑍 ) ∧ ( 𝑊 ‘ 𝑍 ) We 𝑍 ) → ( 𝑍 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑍 ) ⊆ ( 𝑍 × 𝑍 ) ∧ ( 𝑊 ‘ 𝑍 ) We 𝑍 ) ) | |
| 27 | 26 | 3expa | ⊢ ( ( ( 𝑍 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑍 ) ⊆ ( 𝑍 × 𝑍 ) ) ∧ ( 𝑊 ‘ 𝑍 ) We 𝑍 ) → ( 𝑍 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑍 ) ⊆ ( 𝑍 × 𝑍 ) ∧ ( 𝑊 ‘ 𝑍 ) We 𝑍 ) ) |
| 28 | 27 | adantrr | ⊢ ( ( ( 𝑍 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑍 ) ⊆ ( 𝑍 × 𝑍 ) ) ∧ ( ( 𝑊 ‘ 𝑍 ) We 𝑍 ∧ ∀ 𝑏 ∈ 𝑍 [ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { 𝑏 } ) / 𝑣 ] ( 𝑣 𝐹 ( ( 𝑊 ‘ 𝑍 ) ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑏 ) ) → ( 𝑍 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑍 ) ⊆ ( 𝑍 × 𝑍 ) ∧ ( 𝑊 ‘ 𝑍 ) We 𝑍 ) ) |
| 29 | 25 28 | syl | ⊢ ( 𝜑 → ( 𝑍 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑍 ) ⊆ ( 𝑍 × 𝑍 ) ∧ ( 𝑊 ‘ 𝑍 ) We 𝑍 ) ) |
| 30 | 22 | simprd | ⊢ ( 𝜑 → ( 𝑍 𝐹 ( 𝑊 ‘ 𝑍 ) ) ∈ 𝑍 ) |
| 31 | 25 | simpld | ⊢ ( 𝜑 → ( 𝑍 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑍 ) ⊆ ( 𝑍 × 𝑍 ) ) ) |
| 32 | 31 | simpld | ⊢ ( 𝜑 → 𝑍 ⊆ 𝐴 ) |
| 33 | 19 32 | ssexd | ⊢ ( 𝜑 → 𝑍 ∈ V ) |
| 34 | fvexd | ⊢ ( 𝜑 → ( 𝑊 ‘ 𝑍 ) ∈ V ) | |
| 35 | simpl | ⊢ ( ( 𝑎 = 𝑍 ∧ 𝑠 = ( 𝑊 ‘ 𝑍 ) ) → 𝑎 = 𝑍 ) | |
| 36 | 35 | sseq1d | ⊢ ( ( 𝑎 = 𝑍 ∧ 𝑠 = ( 𝑊 ‘ 𝑍 ) ) → ( 𝑎 ⊆ 𝐴 ↔ 𝑍 ⊆ 𝐴 ) ) |
| 37 | simpr | ⊢ ( ( 𝑎 = 𝑍 ∧ 𝑠 = ( 𝑊 ‘ 𝑍 ) ) → 𝑠 = ( 𝑊 ‘ 𝑍 ) ) | |
| 38 | 35 | sqxpeqd | ⊢ ( ( 𝑎 = 𝑍 ∧ 𝑠 = ( 𝑊 ‘ 𝑍 ) ) → ( 𝑎 × 𝑎 ) = ( 𝑍 × 𝑍 ) ) |
| 39 | 37 38 | sseq12d | ⊢ ( ( 𝑎 = 𝑍 ∧ 𝑠 = ( 𝑊 ‘ 𝑍 ) ) → ( 𝑠 ⊆ ( 𝑎 × 𝑎 ) ↔ ( 𝑊 ‘ 𝑍 ) ⊆ ( 𝑍 × 𝑍 ) ) ) |
| 40 | 37 35 | weeq12d | ⊢ ( ( 𝑎 = 𝑍 ∧ 𝑠 = ( 𝑊 ‘ 𝑍 ) ) → ( 𝑠 We 𝑎 ↔ ( 𝑊 ‘ 𝑍 ) We 𝑍 ) ) |
| 41 | 36 39 40 | 3anbi123d | ⊢ ( ( 𝑎 = 𝑍 ∧ 𝑠 = ( 𝑊 ‘ 𝑍 ) ) → ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ↔ ( 𝑍 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑍 ) ⊆ ( 𝑍 × 𝑍 ) ∧ ( 𝑊 ‘ 𝑍 ) We 𝑍 ) ) ) |
| 42 | oveq12 | ⊢ ( ( 𝑎 = 𝑍 ∧ 𝑠 = ( 𝑊 ‘ 𝑍 ) ) → ( 𝑎 𝐹 𝑠 ) = ( 𝑍 𝐹 ( 𝑊 ‘ 𝑍 ) ) ) | |
| 43 | 42 35 | eleq12d | ⊢ ( ( 𝑎 = 𝑍 ∧ 𝑠 = ( 𝑊 ‘ 𝑍 ) ) → ( ( 𝑎 𝐹 𝑠 ) ∈ 𝑎 ↔ ( 𝑍 𝐹 ( 𝑊 ‘ 𝑍 ) ) ∈ 𝑍 ) ) |
| 44 | 35 | breq1d | ⊢ ( ( 𝑎 = 𝑍 ∧ 𝑠 = ( 𝑊 ‘ 𝑍 ) ) → ( 𝑎 ≺ ω ↔ 𝑍 ≺ ω ) ) |
| 45 | 43 44 | imbi12d | ⊢ ( ( 𝑎 = 𝑍 ∧ 𝑠 = ( 𝑊 ‘ 𝑍 ) ) → ( ( ( 𝑎 𝐹 𝑠 ) ∈ 𝑎 → 𝑎 ≺ ω ) ↔ ( ( 𝑍 𝐹 ( 𝑊 ‘ 𝑍 ) ) ∈ 𝑍 → 𝑍 ≺ ω ) ) ) |
| 46 | 41 45 | imbi12d | ⊢ ( ( 𝑎 = 𝑍 ∧ 𝑠 = ( 𝑊 ‘ 𝑍 ) ) → ( ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) → ( ( 𝑎 𝐹 𝑠 ) ∈ 𝑎 → 𝑎 ≺ ω ) ) ↔ ( ( 𝑍 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑍 ) ⊆ ( 𝑍 × 𝑍 ) ∧ ( 𝑊 ‘ 𝑍 ) We 𝑍 ) → ( ( 𝑍 𝐹 ( 𝑊 ‘ 𝑍 ) ) ∈ 𝑍 → 𝑍 ≺ ω ) ) ) ) |
| 47 | omelon | ⊢ ω ∈ On | |
| 48 | onenon | ⊢ ( ω ∈ On → ω ∈ dom card ) | |
| 49 | 47 48 | ax-mp | ⊢ ω ∈ dom card |
| 50 | simpr3 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ) → 𝑠 We 𝑎 ) | |
| 51 | 50 | 19.8ad | ⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ) → ∃ 𝑠 𝑠 We 𝑎 ) |
| 52 | ween | ⊢ ( 𝑎 ∈ dom card ↔ ∃ 𝑠 𝑠 We 𝑎 ) | |
| 53 | 51 52 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ) → 𝑎 ∈ dom card ) |
| 54 | domtri2 | ⊢ ( ( ω ∈ dom card ∧ 𝑎 ∈ dom card ) → ( ω ≼ 𝑎 ↔ ¬ 𝑎 ≺ ω ) ) | |
| 55 | 49 53 54 | sylancr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ) → ( ω ≼ 𝑎 ↔ ¬ 𝑎 ≺ ω ) ) |
| 56 | nfv | ⊢ Ⅎ 𝑟 ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) | |
| 57 | nfcv | ⊢ Ⅎ 𝑟 𝑎 | |
| 58 | nfmpo2 | ⊢ Ⅎ 𝑟 ( 𝑥 ∈ V , 𝑟 ∈ V ↦ if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) ) | |
| 59 | 7 58 | nfcxfr | ⊢ Ⅎ 𝑟 𝐹 |
| 60 | nfcv | ⊢ Ⅎ 𝑟 𝑠 | |
| 61 | 57 59 60 | nfov | ⊢ Ⅎ 𝑟 ( 𝑎 𝐹 𝑠 ) |
| 62 | 61 | nfel1 | ⊢ Ⅎ 𝑟 ( 𝑎 𝐹 𝑠 ) ∈ ( 𝐴 ∖ 𝑎 ) |
| 63 | 56 62 | nfim | ⊢ Ⅎ 𝑟 ( ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) → ( 𝑎 𝐹 𝑠 ) ∈ ( 𝐴 ∖ 𝑎 ) ) |
| 64 | sseq1 | ⊢ ( 𝑟 = 𝑠 → ( 𝑟 ⊆ ( 𝑎 × 𝑎 ) ↔ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ) | |
| 65 | weeq1 | ⊢ ( 𝑟 = 𝑠 → ( 𝑟 We 𝑎 ↔ 𝑠 We 𝑎 ) ) | |
| 66 | 64 65 | 3anbi23d | ⊢ ( 𝑟 = 𝑠 → ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ↔ ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ) ) |
| 67 | 66 | anbi1d | ⊢ ( 𝑟 = 𝑠 → ( ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ∧ ω ≼ 𝑎 ) ↔ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) ) |
| 68 | 67 | anbi2d | ⊢ ( 𝑟 = 𝑠 → ( ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) ↔ ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) ) ) |
| 69 | oveq2 | ⊢ ( 𝑟 = 𝑠 → ( 𝑎 𝐹 𝑟 ) = ( 𝑎 𝐹 𝑠 ) ) | |
| 70 | 69 | eleq1d | ⊢ ( 𝑟 = 𝑠 → ( ( 𝑎 𝐹 𝑟 ) ∈ ( 𝐴 ∖ 𝑎 ) ↔ ( 𝑎 𝐹 𝑠 ) ∈ ( 𝐴 ∖ 𝑎 ) ) ) |
| 71 | 68 70 | imbi12d | ⊢ ( 𝑟 = 𝑠 → ( ( ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) → ( 𝑎 𝐹 𝑟 ) ∈ ( 𝐴 ∖ 𝑎 ) ) ↔ ( ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) → ( 𝑎 𝐹 𝑠 ) ∈ ( 𝐴 ∖ 𝑎 ) ) ) ) |
| 72 | nfv | ⊢ Ⅎ 𝑥 ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) | |
| 73 | nfcv | ⊢ Ⅎ 𝑥 𝑎 | |
| 74 | nfmpo1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ V , 𝑟 ∈ V ↦ if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) ) | |
| 75 | 7 74 | nfcxfr | ⊢ Ⅎ 𝑥 𝐹 |
| 76 | nfcv | ⊢ Ⅎ 𝑥 𝑟 | |
| 77 | 73 75 76 | nfov | ⊢ Ⅎ 𝑥 ( 𝑎 𝐹 𝑟 ) |
| 78 | 77 | nfel1 | ⊢ Ⅎ 𝑥 ( 𝑎 𝐹 𝑟 ) ∈ ( 𝐴 ∖ 𝑎 ) |
| 79 | 72 78 | nfim | ⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) → ( 𝑎 𝐹 𝑟 ) ∈ ( 𝐴 ∖ 𝑎 ) ) |
| 80 | sseq1 | ⊢ ( 𝑥 = 𝑎 → ( 𝑥 ⊆ 𝐴 ↔ 𝑎 ⊆ 𝐴 ) ) | |
| 81 | xpeq12 | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑥 = 𝑎 ) → ( 𝑥 × 𝑥 ) = ( 𝑎 × 𝑎 ) ) | |
| 82 | 81 | anidms | ⊢ ( 𝑥 = 𝑎 → ( 𝑥 × 𝑥 ) = ( 𝑎 × 𝑎 ) ) |
| 83 | 82 | sseq2d | ⊢ ( 𝑥 = 𝑎 → ( 𝑟 ⊆ ( 𝑥 × 𝑥 ) ↔ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ) ) |
| 84 | weeq2 | ⊢ ( 𝑥 = 𝑎 → ( 𝑟 We 𝑥 ↔ 𝑟 We 𝑎 ) ) | |
| 85 | 80 83 84 | 3anbi123d | ⊢ ( 𝑥 = 𝑎 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ↔ ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ) ) |
| 86 | breq2 | ⊢ ( 𝑥 = 𝑎 → ( ω ≼ 𝑥 ↔ ω ≼ 𝑎 ) ) | |
| 87 | 85 86 | anbi12d | ⊢ ( 𝑥 = 𝑎 → ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ∧ ω ≼ 𝑥 ) ↔ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) ) |
| 88 | 4 87 | bitrid | ⊢ ( 𝑥 = 𝑎 → ( 𝜓 ↔ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) ) |
| 89 | 88 | anbi2d | ⊢ ( 𝑥 = 𝑎 → ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) ) ) |
| 90 | oveq1 | ⊢ ( 𝑥 = 𝑎 → ( 𝑥 𝐹 𝑟 ) = ( 𝑎 𝐹 𝑟 ) ) | |
| 91 | difeq2 | ⊢ ( 𝑥 = 𝑎 → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ 𝑎 ) ) | |
| 92 | 90 91 | eleq12d | ⊢ ( 𝑥 = 𝑎 → ( ( 𝑥 𝐹 𝑟 ) ∈ ( 𝐴 ∖ 𝑥 ) ↔ ( 𝑎 𝐹 𝑟 ) ∈ ( 𝐴 ∖ 𝑎 ) ) ) |
| 93 | 89 92 | imbi12d | ⊢ ( 𝑥 = 𝑎 → ( ( ( 𝜑 ∧ 𝜓 ) → ( 𝑥 𝐹 𝑟 ) ∈ ( 𝐴 ∖ 𝑥 ) ) ↔ ( ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) → ( 𝑎 𝐹 𝑟 ) ∈ ( 𝐴 ∖ 𝑎 ) ) ) ) |
| 94 | 1 2 3 4 5 6 7 | pwfseqlem3 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑥 𝐹 𝑟 ) ∈ ( 𝐴 ∖ 𝑥 ) ) |
| 95 | 79 93 94 | chvarfv | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) → ( 𝑎 𝐹 𝑟 ) ∈ ( 𝐴 ∖ 𝑎 ) ) |
| 96 | 63 71 95 | chvarfv | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) → ( 𝑎 𝐹 𝑠 ) ∈ ( 𝐴 ∖ 𝑎 ) ) |
| 97 | 96 | eldifbd | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) → ¬ ( 𝑎 𝐹 𝑠 ) ∈ 𝑎 ) |
| 98 | 97 | expr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ) → ( ω ≼ 𝑎 → ¬ ( 𝑎 𝐹 𝑠 ) ∈ 𝑎 ) ) |
| 99 | 55 98 | sylbird | ⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ) → ( ¬ 𝑎 ≺ ω → ¬ ( 𝑎 𝐹 𝑠 ) ∈ 𝑎 ) ) |
| 100 | 99 | con4d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ) → ( ( 𝑎 𝐹 𝑠 ) ∈ 𝑎 → 𝑎 ≺ ω ) ) |
| 101 | 100 | ex | ⊢ ( 𝜑 → ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) → ( ( 𝑎 𝐹 𝑠 ) ∈ 𝑎 → 𝑎 ≺ ω ) ) ) |
| 102 | 33 34 46 101 | vtocl2d | ⊢ ( 𝜑 → ( ( 𝑍 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑍 ) ⊆ ( 𝑍 × 𝑍 ) ∧ ( 𝑊 ‘ 𝑍 ) We 𝑍 ) → ( ( 𝑍 𝐹 ( 𝑊 ‘ 𝑍 ) ) ∈ 𝑍 → 𝑍 ≺ ω ) ) ) |
| 103 | 29 30 102 | mp2d | ⊢ ( 𝜑 → 𝑍 ≺ ω ) |
| 104 | isfinite | ⊢ ( 𝑍 ∈ Fin ↔ 𝑍 ≺ ω ) | |
| 105 | 103 104 | sylibr | ⊢ ( 𝜑 → 𝑍 ∈ Fin ) |
| 106 | fvex | ⊢ ( 𝑊 ‘ 𝑍 ) ∈ V | |
| 107 | 1 2 3 4 5 6 7 | pwfseqlem2 | ⊢ ( ( 𝑍 ∈ Fin ∧ ( 𝑊 ‘ 𝑍 ) ∈ V ) → ( 𝑍 𝐹 ( 𝑊 ‘ 𝑍 ) ) = ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ) |
| 108 | 105 106 107 | sylancl | ⊢ ( 𝜑 → ( 𝑍 𝐹 ( 𝑊 ‘ 𝑍 ) ) = ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ) |
| 109 | 108 30 | eqeltrrd | ⊢ ( 𝜑 → ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ∈ 𝑍 ) |
| 110 | 8 19 23 | fpwwe2lem3 | ⊢ ( ( 𝜑 ∧ ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ∈ 𝑍 ) → ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) 𝐹 ( ( 𝑊 ‘ 𝑍 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) × ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ) ) ) = ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ) |
| 111 | 109 110 | mpdan | ⊢ ( 𝜑 → ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) 𝐹 ( ( 𝑊 ‘ 𝑍 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) × ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ) ) ) = ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ) |
| 112 | cnvimass | ⊢ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ⊆ dom ( 𝑊 ‘ 𝑍 ) | |
| 113 | 31 | simprd | ⊢ ( 𝜑 → ( 𝑊 ‘ 𝑍 ) ⊆ ( 𝑍 × 𝑍 ) ) |
| 114 | dmss | ⊢ ( ( 𝑊 ‘ 𝑍 ) ⊆ ( 𝑍 × 𝑍 ) → dom ( 𝑊 ‘ 𝑍 ) ⊆ dom ( 𝑍 × 𝑍 ) ) | |
| 115 | 113 114 | syl | ⊢ ( 𝜑 → dom ( 𝑊 ‘ 𝑍 ) ⊆ dom ( 𝑍 × 𝑍 ) ) |
| 116 | dmxpss | ⊢ dom ( 𝑍 × 𝑍 ) ⊆ 𝑍 | |
| 117 | 115 116 | sstrdi | ⊢ ( 𝜑 → dom ( 𝑊 ‘ 𝑍 ) ⊆ 𝑍 ) |
| 118 | 112 117 | sstrid | ⊢ ( 𝜑 → ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ⊆ 𝑍 ) |
| 119 | 105 118 | ssfid | ⊢ ( 𝜑 → ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ∈ Fin ) |
| 120 | 106 | inex1 | ⊢ ( ( 𝑊 ‘ 𝑍 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) × ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ) ) ∈ V |
| 121 | 1 2 3 4 5 6 7 | pwfseqlem2 | ⊢ ( ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ∈ Fin ∧ ( ( 𝑊 ‘ 𝑍 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) × ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ) ) ∈ V ) → ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) 𝐹 ( ( 𝑊 ‘ 𝑍 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) × ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ) ) ) = ( 𝐻 ‘ ( card ‘ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ) ) ) |
| 122 | 119 120 121 | sylancl | ⊢ ( 𝜑 → ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) 𝐹 ( ( 𝑊 ‘ 𝑍 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) × ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ) ) ) = ( 𝐻 ‘ ( card ‘ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ) ) ) |
| 123 | 111 122 | eqtr3d | ⊢ ( 𝜑 → ( 𝐻 ‘ ( card ‘ 𝑍 ) ) = ( 𝐻 ‘ ( card ‘ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ) ) ) |
| 124 | f1of1 | ⊢ ( 𝐻 : ω –1-1-onto→ 𝑋 → 𝐻 : ω –1-1→ 𝑋 ) | |
| 125 | 3 124 | syl | ⊢ ( 𝜑 → 𝐻 : ω –1-1→ 𝑋 ) |
| 126 | ficardom | ⊢ ( 𝑍 ∈ Fin → ( card ‘ 𝑍 ) ∈ ω ) | |
| 127 | 105 126 | syl | ⊢ ( 𝜑 → ( card ‘ 𝑍 ) ∈ ω ) |
| 128 | ficardom | ⊢ ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ∈ Fin → ( card ‘ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ) ∈ ω ) | |
| 129 | 119 128 | syl | ⊢ ( 𝜑 → ( card ‘ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ) ∈ ω ) |
| 130 | f1fveq | ⊢ ( ( 𝐻 : ω –1-1→ 𝑋 ∧ ( ( card ‘ 𝑍 ) ∈ ω ∧ ( card ‘ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ) ∈ ω ) ) → ( ( 𝐻 ‘ ( card ‘ 𝑍 ) ) = ( 𝐻 ‘ ( card ‘ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ) ) ↔ ( card ‘ 𝑍 ) = ( card ‘ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ) ) ) | |
| 131 | 125 127 129 130 | syl12anc | ⊢ ( 𝜑 → ( ( 𝐻 ‘ ( card ‘ 𝑍 ) ) = ( 𝐻 ‘ ( card ‘ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ) ) ↔ ( card ‘ 𝑍 ) = ( card ‘ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ) ) ) |
| 132 | 123 131 | mpbid | ⊢ ( 𝜑 → ( card ‘ 𝑍 ) = ( card ‘ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ) ) |
| 133 | 132 | eqcomd | ⊢ ( 𝜑 → ( card ‘ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ) = ( card ‘ 𝑍 ) ) |
| 134 | finnum | ⊢ ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ∈ Fin → ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ∈ dom card ) | |
| 135 | 119 134 | syl | ⊢ ( 𝜑 → ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ∈ dom card ) |
| 136 | finnum | ⊢ ( 𝑍 ∈ Fin → 𝑍 ∈ dom card ) | |
| 137 | 105 136 | syl | ⊢ ( 𝜑 → 𝑍 ∈ dom card ) |
| 138 | carden2 | ⊢ ( ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ∈ dom card ∧ 𝑍 ∈ dom card ) → ( ( card ‘ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ) = ( card ‘ 𝑍 ) ↔ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ≈ 𝑍 ) ) | |
| 139 | 135 137 138 | syl2anc | ⊢ ( 𝜑 → ( ( card ‘ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ) = ( card ‘ 𝑍 ) ↔ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ≈ 𝑍 ) ) |
| 140 | 133 139 | mpbid | ⊢ ( 𝜑 → ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ≈ 𝑍 ) |
| 141 | dfpss2 | ⊢ ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ⊊ 𝑍 ↔ ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ⊆ 𝑍 ∧ ¬ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) = 𝑍 ) ) | |
| 142 | 141 | baib | ⊢ ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ⊆ 𝑍 → ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ⊊ 𝑍 ↔ ¬ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) = 𝑍 ) ) |
| 143 | 118 142 | syl | ⊢ ( 𝜑 → ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ⊊ 𝑍 ↔ ¬ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) = 𝑍 ) ) |
| 144 | php3 | ⊢ ( ( 𝑍 ∈ Fin ∧ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ⊊ 𝑍 ) → ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ≺ 𝑍 ) | |
| 145 | sdomnen | ⊢ ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ≺ 𝑍 → ¬ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ≈ 𝑍 ) | |
| 146 | 144 145 | syl | ⊢ ( ( 𝑍 ∈ Fin ∧ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ⊊ 𝑍 ) → ¬ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ≈ 𝑍 ) |
| 147 | 146 | ex | ⊢ ( 𝑍 ∈ Fin → ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ⊊ 𝑍 → ¬ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ≈ 𝑍 ) ) |
| 148 | 105 147 | syl | ⊢ ( 𝜑 → ( ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ⊊ 𝑍 → ¬ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ≈ 𝑍 ) ) |
| 149 | 143 148 | sylbird | ⊢ ( 𝜑 → ( ¬ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) = 𝑍 → ¬ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ≈ 𝑍 ) ) |
| 150 | 140 149 | mt4d | ⊢ ( 𝜑 → ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) = 𝑍 ) |
| 151 | 109 150 | eleqtrrd | ⊢ ( 𝜑 → ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ∈ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ) |
| 152 | fvex | ⊢ ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ∈ V | |
| 153 | 152 | eliniseg | ⊢ ( ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ∈ V → ( ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ∈ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ↔ ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ( 𝑊 ‘ 𝑍 ) ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ) ) |
| 154 | 152 153 | ax-mp | ⊢ ( ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ∈ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { ( 𝐻 ‘ ( card ‘ 𝑍 ) ) } ) ↔ ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ( 𝑊 ‘ 𝑍 ) ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ) |
| 155 | 151 154 | sylib | ⊢ ( 𝜑 → ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ( 𝑊 ‘ 𝑍 ) ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ) |
| 156 | 25 | simprd | ⊢ ( 𝜑 → ( ( 𝑊 ‘ 𝑍 ) We 𝑍 ∧ ∀ 𝑏 ∈ 𝑍 [ ( ◡ ( 𝑊 ‘ 𝑍 ) “ { 𝑏 } ) / 𝑣 ] ( 𝑣 𝐹 ( ( 𝑊 ‘ 𝑍 ) ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑏 ) ) |
| 157 | 156 | simpld | ⊢ ( 𝜑 → ( 𝑊 ‘ 𝑍 ) We 𝑍 ) |
| 158 | weso | ⊢ ( ( 𝑊 ‘ 𝑍 ) We 𝑍 → ( 𝑊 ‘ 𝑍 ) Or 𝑍 ) | |
| 159 | 157 158 | syl | ⊢ ( 𝜑 → ( 𝑊 ‘ 𝑍 ) Or 𝑍 ) |
| 160 | sonr | ⊢ ( ( ( 𝑊 ‘ 𝑍 ) Or 𝑍 ∧ ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ∈ 𝑍 ) → ¬ ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ( 𝑊 ‘ 𝑍 ) ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ) | |
| 161 | 159 109 160 | syl2anc | ⊢ ( 𝜑 → ¬ ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ( 𝑊 ‘ 𝑍 ) ( 𝐻 ‘ ( card ‘ 𝑍 ) ) ) |
| 162 | 155 161 | pm2.65i | ⊢ ¬ 𝜑 |