This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pwfseqlem4 . (Contributed by Mario Carneiro, 7-Jun-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwfseqlem4.g | ⊢ ( 𝜑 → 𝐺 : 𝒫 𝐴 –1-1→ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) | |
| pwfseqlem4.x | ⊢ ( 𝜑 → 𝑋 ⊆ 𝐴 ) | ||
| pwfseqlem4.h | ⊢ ( 𝜑 → 𝐻 : ω –1-1-onto→ 𝑋 ) | ||
| pwfseqlem4.ps | ⊢ ( 𝜓 ↔ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ∧ ω ≼ 𝑥 ) ) | ||
| pwfseqlem4.k | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐾 : ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) –1-1→ 𝑥 ) | ||
| pwfseqlem4.d | ⊢ 𝐷 = ( 𝐺 ‘ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) | ||
| pwfseqlem4.f | ⊢ 𝐹 = ( 𝑥 ∈ V , 𝑟 ∈ V ↦ if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) ) | ||
| Assertion | pwfseqlem4a | ⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ) → ( 𝑎 𝐹 𝑠 ) ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwfseqlem4.g | ⊢ ( 𝜑 → 𝐺 : 𝒫 𝐴 –1-1→ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) | |
| 2 | pwfseqlem4.x | ⊢ ( 𝜑 → 𝑋 ⊆ 𝐴 ) | |
| 3 | pwfseqlem4.h | ⊢ ( 𝜑 → 𝐻 : ω –1-1-onto→ 𝑋 ) | |
| 4 | pwfseqlem4.ps | ⊢ ( 𝜓 ↔ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ∧ ω ≼ 𝑥 ) ) | |
| 5 | pwfseqlem4.k | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐾 : ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) –1-1→ 𝑥 ) | |
| 6 | pwfseqlem4.d | ⊢ 𝐷 = ( 𝐺 ‘ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) | |
| 7 | pwfseqlem4.f | ⊢ 𝐹 = ( 𝑥 ∈ V , 𝑟 ∈ V ↦ if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) ) | |
| 8 | isfinite | ⊢ ( 𝑎 ∈ Fin ↔ 𝑎 ≺ ω ) | |
| 9 | simpr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ Fin ) → 𝑎 ∈ Fin ) | |
| 10 | vex | ⊢ 𝑠 ∈ V | |
| 11 | 1 2 3 4 5 6 7 | pwfseqlem2 | ⊢ ( ( 𝑎 ∈ Fin ∧ 𝑠 ∈ V ) → ( 𝑎 𝐹 𝑠 ) = ( 𝐻 ‘ ( card ‘ 𝑎 ) ) ) |
| 12 | 9 10 11 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ Fin ) → ( 𝑎 𝐹 𝑠 ) = ( 𝐻 ‘ ( card ‘ 𝑎 ) ) ) |
| 13 | f1of | ⊢ ( 𝐻 : ω –1-1-onto→ 𝑋 → 𝐻 : ω ⟶ 𝑋 ) | |
| 14 | 3 13 | syl | ⊢ ( 𝜑 → 𝐻 : ω ⟶ 𝑋 ) |
| 15 | 14 2 | fssd | ⊢ ( 𝜑 → 𝐻 : ω ⟶ 𝐴 ) |
| 16 | ficardom | ⊢ ( 𝑎 ∈ Fin → ( card ‘ 𝑎 ) ∈ ω ) | |
| 17 | ffvelcdm | ⊢ ( ( 𝐻 : ω ⟶ 𝐴 ∧ ( card ‘ 𝑎 ) ∈ ω ) → ( 𝐻 ‘ ( card ‘ 𝑎 ) ) ∈ 𝐴 ) | |
| 18 | 15 16 17 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ Fin ) → ( 𝐻 ‘ ( card ‘ 𝑎 ) ) ∈ 𝐴 ) |
| 19 | 12 18 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ Fin ) → ( 𝑎 𝐹 𝑠 ) ∈ 𝐴 ) |
| 20 | 19 | ex | ⊢ ( 𝜑 → ( 𝑎 ∈ Fin → ( 𝑎 𝐹 𝑠 ) ∈ 𝐴 ) ) |
| 21 | 20 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ) → ( 𝑎 ∈ Fin → ( 𝑎 𝐹 𝑠 ) ∈ 𝐴 ) ) |
| 22 | 8 21 | biimtrrid | ⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ) → ( 𝑎 ≺ ω → ( 𝑎 𝐹 𝑠 ) ∈ 𝐴 ) ) |
| 23 | omelon | ⊢ ω ∈ On | |
| 24 | onenon | ⊢ ( ω ∈ On → ω ∈ dom card ) | |
| 25 | 23 24 | ax-mp | ⊢ ω ∈ dom card |
| 26 | simpr3 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ) → 𝑠 We 𝑎 ) | |
| 27 | 26 | 19.8ad | ⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ) → ∃ 𝑠 𝑠 We 𝑎 ) |
| 28 | ween | ⊢ ( 𝑎 ∈ dom card ↔ ∃ 𝑠 𝑠 We 𝑎 ) | |
| 29 | 27 28 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ) → 𝑎 ∈ dom card ) |
| 30 | domtri2 | ⊢ ( ( ω ∈ dom card ∧ 𝑎 ∈ dom card ) → ( ω ≼ 𝑎 ↔ ¬ 𝑎 ≺ ω ) ) | |
| 31 | 25 29 30 | sylancr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ) → ( ω ≼ 𝑎 ↔ ¬ 𝑎 ≺ ω ) ) |
| 32 | nfv | ⊢ Ⅎ 𝑟 ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) | |
| 33 | nfcv | ⊢ Ⅎ 𝑟 𝑎 | |
| 34 | nfmpo2 | ⊢ Ⅎ 𝑟 ( 𝑥 ∈ V , 𝑟 ∈ V ↦ if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) ) | |
| 35 | 7 34 | nfcxfr | ⊢ Ⅎ 𝑟 𝐹 |
| 36 | nfcv | ⊢ Ⅎ 𝑟 𝑠 | |
| 37 | 33 35 36 | nfov | ⊢ Ⅎ 𝑟 ( 𝑎 𝐹 𝑠 ) |
| 38 | 37 | nfel1 | ⊢ Ⅎ 𝑟 ( 𝑎 𝐹 𝑠 ) ∈ ( 𝐴 ∖ 𝑎 ) |
| 39 | 32 38 | nfim | ⊢ Ⅎ 𝑟 ( ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) → ( 𝑎 𝐹 𝑠 ) ∈ ( 𝐴 ∖ 𝑎 ) ) |
| 40 | sseq1 | ⊢ ( 𝑟 = 𝑠 → ( 𝑟 ⊆ ( 𝑎 × 𝑎 ) ↔ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ) | |
| 41 | weeq1 | ⊢ ( 𝑟 = 𝑠 → ( 𝑟 We 𝑎 ↔ 𝑠 We 𝑎 ) ) | |
| 42 | 40 41 | 3anbi23d | ⊢ ( 𝑟 = 𝑠 → ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ↔ ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ) ) |
| 43 | 42 | anbi1d | ⊢ ( 𝑟 = 𝑠 → ( ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ∧ ω ≼ 𝑎 ) ↔ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) ) |
| 44 | 43 | anbi2d | ⊢ ( 𝑟 = 𝑠 → ( ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) ↔ ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) ) ) |
| 45 | oveq2 | ⊢ ( 𝑟 = 𝑠 → ( 𝑎 𝐹 𝑟 ) = ( 𝑎 𝐹 𝑠 ) ) | |
| 46 | 45 | eleq1d | ⊢ ( 𝑟 = 𝑠 → ( ( 𝑎 𝐹 𝑟 ) ∈ ( 𝐴 ∖ 𝑎 ) ↔ ( 𝑎 𝐹 𝑠 ) ∈ ( 𝐴 ∖ 𝑎 ) ) ) |
| 47 | 44 46 | imbi12d | ⊢ ( 𝑟 = 𝑠 → ( ( ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) → ( 𝑎 𝐹 𝑟 ) ∈ ( 𝐴 ∖ 𝑎 ) ) ↔ ( ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) → ( 𝑎 𝐹 𝑠 ) ∈ ( 𝐴 ∖ 𝑎 ) ) ) ) |
| 48 | nfv | ⊢ Ⅎ 𝑥 ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) | |
| 49 | nfcv | ⊢ Ⅎ 𝑥 𝑎 | |
| 50 | nfmpo1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ V , 𝑟 ∈ V ↦ if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) ) | |
| 51 | 7 50 | nfcxfr | ⊢ Ⅎ 𝑥 𝐹 |
| 52 | nfcv | ⊢ Ⅎ 𝑥 𝑟 | |
| 53 | 49 51 52 | nfov | ⊢ Ⅎ 𝑥 ( 𝑎 𝐹 𝑟 ) |
| 54 | 53 | nfel1 | ⊢ Ⅎ 𝑥 ( 𝑎 𝐹 𝑟 ) ∈ ( 𝐴 ∖ 𝑎 ) |
| 55 | 48 54 | nfim | ⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) → ( 𝑎 𝐹 𝑟 ) ∈ ( 𝐴 ∖ 𝑎 ) ) |
| 56 | sseq1 | ⊢ ( 𝑥 = 𝑎 → ( 𝑥 ⊆ 𝐴 ↔ 𝑎 ⊆ 𝐴 ) ) | |
| 57 | xpeq12 | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑥 = 𝑎 ) → ( 𝑥 × 𝑥 ) = ( 𝑎 × 𝑎 ) ) | |
| 58 | 57 | anidms | ⊢ ( 𝑥 = 𝑎 → ( 𝑥 × 𝑥 ) = ( 𝑎 × 𝑎 ) ) |
| 59 | 58 | sseq2d | ⊢ ( 𝑥 = 𝑎 → ( 𝑟 ⊆ ( 𝑥 × 𝑥 ) ↔ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ) ) |
| 60 | weeq2 | ⊢ ( 𝑥 = 𝑎 → ( 𝑟 We 𝑥 ↔ 𝑟 We 𝑎 ) ) | |
| 61 | 56 59 60 | 3anbi123d | ⊢ ( 𝑥 = 𝑎 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ↔ ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ) ) |
| 62 | breq2 | ⊢ ( 𝑥 = 𝑎 → ( ω ≼ 𝑥 ↔ ω ≼ 𝑎 ) ) | |
| 63 | 61 62 | anbi12d | ⊢ ( 𝑥 = 𝑎 → ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ∧ ω ≼ 𝑥 ) ↔ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) ) |
| 64 | 4 63 | bitrid | ⊢ ( 𝑥 = 𝑎 → ( 𝜓 ↔ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) ) |
| 65 | 64 | anbi2d | ⊢ ( 𝑥 = 𝑎 → ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) ) ) |
| 66 | oveq1 | ⊢ ( 𝑥 = 𝑎 → ( 𝑥 𝐹 𝑟 ) = ( 𝑎 𝐹 𝑟 ) ) | |
| 67 | difeq2 | ⊢ ( 𝑥 = 𝑎 → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ 𝑎 ) ) | |
| 68 | 66 67 | eleq12d | ⊢ ( 𝑥 = 𝑎 → ( ( 𝑥 𝐹 𝑟 ) ∈ ( 𝐴 ∖ 𝑥 ) ↔ ( 𝑎 𝐹 𝑟 ) ∈ ( 𝐴 ∖ 𝑎 ) ) ) |
| 69 | 65 68 | imbi12d | ⊢ ( 𝑥 = 𝑎 → ( ( ( 𝜑 ∧ 𝜓 ) → ( 𝑥 𝐹 𝑟 ) ∈ ( 𝐴 ∖ 𝑥 ) ) ↔ ( ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) → ( 𝑎 𝐹 𝑟 ) ∈ ( 𝐴 ∖ 𝑎 ) ) ) ) |
| 70 | 1 2 3 4 5 6 7 | pwfseqlem3 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑥 𝐹 𝑟 ) ∈ ( 𝐴 ∖ 𝑥 ) ) |
| 71 | 55 69 70 | chvarfv | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) → ( 𝑎 𝐹 𝑟 ) ∈ ( 𝐴 ∖ 𝑎 ) ) |
| 72 | 39 47 71 | chvarfv | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) → ( 𝑎 𝐹 𝑠 ) ∈ ( 𝐴 ∖ 𝑎 ) ) |
| 73 | 72 | eldifad | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) → ( 𝑎 𝐹 𝑠 ) ∈ 𝐴 ) |
| 74 | 73 | expr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ) → ( ω ≼ 𝑎 → ( 𝑎 𝐹 𝑠 ) ∈ 𝐴 ) ) |
| 75 | 31 74 | sylbird | ⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ) → ( ¬ 𝑎 ≺ ω → ( 𝑎 𝐹 𝑠 ) ∈ 𝐴 ) ) |
| 76 | 22 75 | pm2.61d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ) → ( 𝑎 𝐹 𝑠 ) ∈ 𝐴 ) |