This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pwfseq . Derive a final contradiction from the function F in pwfseqlem3 . Applying fpwwe2 to it, we get a certain maximal well-ordered subset Z , but the defining property ( Z F ( WZ ) ) e. Z contradicts our assumption on F , so we are reduced to the case of Z finite. This too is a contradiction, though, because Z and its preimage under ( WZ ) are distinct sets of the same cardinality and in a subset relation, which is impossible for finite sets. (Contributed by Mario Carneiro, 31-May-2015) (Proof shortened by Matthew House, 10-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwfseqlem4.g | |- ( ph -> G : ~P A -1-1-> U_ n e. _om ( A ^m n ) ) |
|
| pwfseqlem4.x | |- ( ph -> X C_ A ) |
||
| pwfseqlem4.h | |- ( ph -> H : _om -1-1-onto-> X ) |
||
| pwfseqlem4.ps | |- ( ps <-> ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) /\ _om ~<_ x ) ) |
||
| pwfseqlem4.k | |- ( ( ph /\ ps ) -> K : U_ n e. _om ( x ^m n ) -1-1-> x ) |
||
| pwfseqlem4.d | |- D = ( G ` { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) |
||
| pwfseqlem4.f | |- F = ( x e. _V , r e. _V |-> if ( x e. Fin , ( H ` ( card ` x ) ) , ( D ` |^| { z e. _om | -. ( D ` z ) e. x } ) ) ) |
||
| pwfseqlem4.w | |- W = { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. b e. a [. ( `' s " { b } ) / v ]. ( v F ( s i^i ( v X. v ) ) ) = b ) ) } |
||
| pwfseqlem4.z | |- Z = U. dom W |
||
| Assertion | pwfseqlem4 | |- -. ph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwfseqlem4.g | |- ( ph -> G : ~P A -1-1-> U_ n e. _om ( A ^m n ) ) |
|
| 2 | pwfseqlem4.x | |- ( ph -> X C_ A ) |
|
| 3 | pwfseqlem4.h | |- ( ph -> H : _om -1-1-onto-> X ) |
|
| 4 | pwfseqlem4.ps | |- ( ps <-> ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) /\ _om ~<_ x ) ) |
|
| 5 | pwfseqlem4.k | |- ( ( ph /\ ps ) -> K : U_ n e. _om ( x ^m n ) -1-1-> x ) |
|
| 6 | pwfseqlem4.d | |- D = ( G ` { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) |
|
| 7 | pwfseqlem4.f | |- F = ( x e. _V , r e. _V |-> if ( x e. Fin , ( H ` ( card ` x ) ) , ( D ` |^| { z e. _om | -. ( D ` z ) e. x } ) ) ) |
|
| 8 | pwfseqlem4.w | |- W = { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. b e. a [. ( `' s " { b } ) / v ]. ( v F ( s i^i ( v X. v ) ) ) = b ) ) } |
|
| 9 | pwfseqlem4.z | |- Z = U. dom W |
|
| 10 | eqid | |- Z = Z |
|
| 11 | eqid | |- ( W ` Z ) = ( W ` Z ) |
|
| 12 | 10 11 | pm3.2i | |- ( Z = Z /\ ( W ` Z ) = ( W ` Z ) ) |
| 13 | omex | |- _om e. _V |
|
| 14 | ovex | |- ( A ^m n ) e. _V |
|
| 15 | 13 14 | iunex | |- U_ n e. _om ( A ^m n ) e. _V |
| 16 | f1dmex | |- ( ( G : ~P A -1-1-> U_ n e. _om ( A ^m n ) /\ U_ n e. _om ( A ^m n ) e. _V ) -> ~P A e. _V ) |
|
| 17 | 1 15 16 | sylancl | |- ( ph -> ~P A e. _V ) |
| 18 | pwexb | |- ( A e. _V <-> ~P A e. _V ) |
|
| 19 | 17 18 | sylibr | |- ( ph -> A e. _V ) |
| 20 | 1 2 3 4 5 6 7 | pwfseqlem4a | |- ( ( ph /\ ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) ) -> ( a F s ) e. A ) |
| 21 | 8 19 20 9 | fpwwe2 | |- ( ph -> ( ( Z W ( W ` Z ) /\ ( Z F ( W ` Z ) ) e. Z ) <-> ( Z = Z /\ ( W ` Z ) = ( W ` Z ) ) ) ) |
| 22 | 12 21 | mpbiri | |- ( ph -> ( Z W ( W ` Z ) /\ ( Z F ( W ` Z ) ) e. Z ) ) |
| 23 | 22 | simpld | |- ( ph -> Z W ( W ` Z ) ) |
| 24 | 8 19 | fpwwe2lem2 | |- ( ph -> ( Z W ( W ` Z ) <-> ( ( Z C_ A /\ ( W ` Z ) C_ ( Z X. Z ) ) /\ ( ( W ` Z ) We Z /\ A. b e. Z [. ( `' ( W ` Z ) " { b } ) / v ]. ( v F ( ( W ` Z ) i^i ( v X. v ) ) ) = b ) ) ) ) |
| 25 | 23 24 | mpbid | |- ( ph -> ( ( Z C_ A /\ ( W ` Z ) C_ ( Z X. Z ) ) /\ ( ( W ` Z ) We Z /\ A. b e. Z [. ( `' ( W ` Z ) " { b } ) / v ]. ( v F ( ( W ` Z ) i^i ( v X. v ) ) ) = b ) ) ) |
| 26 | id | |- ( ( Z C_ A /\ ( W ` Z ) C_ ( Z X. Z ) /\ ( W ` Z ) We Z ) -> ( Z C_ A /\ ( W ` Z ) C_ ( Z X. Z ) /\ ( W ` Z ) We Z ) ) |
|
| 27 | 26 | 3expa | |- ( ( ( Z C_ A /\ ( W ` Z ) C_ ( Z X. Z ) ) /\ ( W ` Z ) We Z ) -> ( Z C_ A /\ ( W ` Z ) C_ ( Z X. Z ) /\ ( W ` Z ) We Z ) ) |
| 28 | 27 | adantrr | |- ( ( ( Z C_ A /\ ( W ` Z ) C_ ( Z X. Z ) ) /\ ( ( W ` Z ) We Z /\ A. b e. Z [. ( `' ( W ` Z ) " { b } ) / v ]. ( v F ( ( W ` Z ) i^i ( v X. v ) ) ) = b ) ) -> ( Z C_ A /\ ( W ` Z ) C_ ( Z X. Z ) /\ ( W ` Z ) We Z ) ) |
| 29 | 25 28 | syl | |- ( ph -> ( Z C_ A /\ ( W ` Z ) C_ ( Z X. Z ) /\ ( W ` Z ) We Z ) ) |
| 30 | 22 | simprd | |- ( ph -> ( Z F ( W ` Z ) ) e. Z ) |
| 31 | 25 | simpld | |- ( ph -> ( Z C_ A /\ ( W ` Z ) C_ ( Z X. Z ) ) ) |
| 32 | 31 | simpld | |- ( ph -> Z C_ A ) |
| 33 | 19 32 | ssexd | |- ( ph -> Z e. _V ) |
| 34 | fvexd | |- ( ph -> ( W ` Z ) e. _V ) |
|
| 35 | simpl | |- ( ( a = Z /\ s = ( W ` Z ) ) -> a = Z ) |
|
| 36 | 35 | sseq1d | |- ( ( a = Z /\ s = ( W ` Z ) ) -> ( a C_ A <-> Z C_ A ) ) |
| 37 | simpr | |- ( ( a = Z /\ s = ( W ` Z ) ) -> s = ( W ` Z ) ) |
|
| 38 | 35 | sqxpeqd | |- ( ( a = Z /\ s = ( W ` Z ) ) -> ( a X. a ) = ( Z X. Z ) ) |
| 39 | 37 38 | sseq12d | |- ( ( a = Z /\ s = ( W ` Z ) ) -> ( s C_ ( a X. a ) <-> ( W ` Z ) C_ ( Z X. Z ) ) ) |
| 40 | 37 35 | weeq12d | |- ( ( a = Z /\ s = ( W ` Z ) ) -> ( s We a <-> ( W ` Z ) We Z ) ) |
| 41 | 36 39 40 | 3anbi123d | |- ( ( a = Z /\ s = ( W ` Z ) ) -> ( ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) <-> ( Z C_ A /\ ( W ` Z ) C_ ( Z X. Z ) /\ ( W ` Z ) We Z ) ) ) |
| 42 | oveq12 | |- ( ( a = Z /\ s = ( W ` Z ) ) -> ( a F s ) = ( Z F ( W ` Z ) ) ) |
|
| 43 | 42 35 | eleq12d | |- ( ( a = Z /\ s = ( W ` Z ) ) -> ( ( a F s ) e. a <-> ( Z F ( W ` Z ) ) e. Z ) ) |
| 44 | 35 | breq1d | |- ( ( a = Z /\ s = ( W ` Z ) ) -> ( a ~< _om <-> Z ~< _om ) ) |
| 45 | 43 44 | imbi12d | |- ( ( a = Z /\ s = ( W ` Z ) ) -> ( ( ( a F s ) e. a -> a ~< _om ) <-> ( ( Z F ( W ` Z ) ) e. Z -> Z ~< _om ) ) ) |
| 46 | 41 45 | imbi12d | |- ( ( a = Z /\ s = ( W ` Z ) ) -> ( ( ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) -> ( ( a F s ) e. a -> a ~< _om ) ) <-> ( ( Z C_ A /\ ( W ` Z ) C_ ( Z X. Z ) /\ ( W ` Z ) We Z ) -> ( ( Z F ( W ` Z ) ) e. Z -> Z ~< _om ) ) ) ) |
| 47 | omelon | |- _om e. On |
|
| 48 | onenon | |- ( _om e. On -> _om e. dom card ) |
|
| 49 | 47 48 | ax-mp | |- _om e. dom card |
| 50 | simpr3 | |- ( ( ph /\ ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) ) -> s We a ) |
|
| 51 | 50 | 19.8ad | |- ( ( ph /\ ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) ) -> E. s s We a ) |
| 52 | ween | |- ( a e. dom card <-> E. s s We a ) |
|
| 53 | 51 52 | sylibr | |- ( ( ph /\ ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) ) -> a e. dom card ) |
| 54 | domtri2 | |- ( ( _om e. dom card /\ a e. dom card ) -> ( _om ~<_ a <-> -. a ~< _om ) ) |
|
| 55 | 49 53 54 | sylancr | |- ( ( ph /\ ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) ) -> ( _om ~<_ a <-> -. a ~< _om ) ) |
| 56 | nfv | |- F/ r ( ph /\ ( ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) /\ _om ~<_ a ) ) |
|
| 57 | nfcv | |- F/_ r a |
|
| 58 | nfmpo2 | |- F/_ r ( x e. _V , r e. _V |-> if ( x e. Fin , ( H ` ( card ` x ) ) , ( D ` |^| { z e. _om | -. ( D ` z ) e. x } ) ) ) |
|
| 59 | 7 58 | nfcxfr | |- F/_ r F |
| 60 | nfcv | |- F/_ r s |
|
| 61 | 57 59 60 | nfov | |- F/_ r ( a F s ) |
| 62 | 61 | nfel1 | |- F/ r ( a F s ) e. ( A \ a ) |
| 63 | 56 62 | nfim | |- F/ r ( ( ph /\ ( ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) /\ _om ~<_ a ) ) -> ( a F s ) e. ( A \ a ) ) |
| 64 | sseq1 | |- ( r = s -> ( r C_ ( a X. a ) <-> s C_ ( a X. a ) ) ) |
|
| 65 | weeq1 | |- ( r = s -> ( r We a <-> s We a ) ) |
|
| 66 | 64 65 | 3anbi23d | |- ( r = s -> ( ( a C_ A /\ r C_ ( a X. a ) /\ r We a ) <-> ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) ) ) |
| 67 | 66 | anbi1d | |- ( r = s -> ( ( ( a C_ A /\ r C_ ( a X. a ) /\ r We a ) /\ _om ~<_ a ) <-> ( ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) /\ _om ~<_ a ) ) ) |
| 68 | 67 | anbi2d | |- ( r = s -> ( ( ph /\ ( ( a C_ A /\ r C_ ( a X. a ) /\ r We a ) /\ _om ~<_ a ) ) <-> ( ph /\ ( ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) /\ _om ~<_ a ) ) ) ) |
| 69 | oveq2 | |- ( r = s -> ( a F r ) = ( a F s ) ) |
|
| 70 | 69 | eleq1d | |- ( r = s -> ( ( a F r ) e. ( A \ a ) <-> ( a F s ) e. ( A \ a ) ) ) |
| 71 | 68 70 | imbi12d | |- ( r = s -> ( ( ( ph /\ ( ( a C_ A /\ r C_ ( a X. a ) /\ r We a ) /\ _om ~<_ a ) ) -> ( a F r ) e. ( A \ a ) ) <-> ( ( ph /\ ( ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) /\ _om ~<_ a ) ) -> ( a F s ) e. ( A \ a ) ) ) ) |
| 72 | nfv | |- F/ x ( ph /\ ( ( a C_ A /\ r C_ ( a X. a ) /\ r We a ) /\ _om ~<_ a ) ) |
|
| 73 | nfcv | |- F/_ x a |
|
| 74 | nfmpo1 | |- F/_ x ( x e. _V , r e. _V |-> if ( x e. Fin , ( H ` ( card ` x ) ) , ( D ` |^| { z e. _om | -. ( D ` z ) e. x } ) ) ) |
|
| 75 | 7 74 | nfcxfr | |- F/_ x F |
| 76 | nfcv | |- F/_ x r |
|
| 77 | 73 75 76 | nfov | |- F/_ x ( a F r ) |
| 78 | 77 | nfel1 | |- F/ x ( a F r ) e. ( A \ a ) |
| 79 | 72 78 | nfim | |- F/ x ( ( ph /\ ( ( a C_ A /\ r C_ ( a X. a ) /\ r We a ) /\ _om ~<_ a ) ) -> ( a F r ) e. ( A \ a ) ) |
| 80 | sseq1 | |- ( x = a -> ( x C_ A <-> a C_ A ) ) |
|
| 81 | xpeq12 | |- ( ( x = a /\ x = a ) -> ( x X. x ) = ( a X. a ) ) |
|
| 82 | 81 | anidms | |- ( x = a -> ( x X. x ) = ( a X. a ) ) |
| 83 | 82 | sseq2d | |- ( x = a -> ( r C_ ( x X. x ) <-> r C_ ( a X. a ) ) ) |
| 84 | weeq2 | |- ( x = a -> ( r We x <-> r We a ) ) |
|
| 85 | 80 83 84 | 3anbi123d | |- ( x = a -> ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) <-> ( a C_ A /\ r C_ ( a X. a ) /\ r We a ) ) ) |
| 86 | breq2 | |- ( x = a -> ( _om ~<_ x <-> _om ~<_ a ) ) |
|
| 87 | 85 86 | anbi12d | |- ( x = a -> ( ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) /\ _om ~<_ x ) <-> ( ( a C_ A /\ r C_ ( a X. a ) /\ r We a ) /\ _om ~<_ a ) ) ) |
| 88 | 4 87 | bitrid | |- ( x = a -> ( ps <-> ( ( a C_ A /\ r C_ ( a X. a ) /\ r We a ) /\ _om ~<_ a ) ) ) |
| 89 | 88 | anbi2d | |- ( x = a -> ( ( ph /\ ps ) <-> ( ph /\ ( ( a C_ A /\ r C_ ( a X. a ) /\ r We a ) /\ _om ~<_ a ) ) ) ) |
| 90 | oveq1 | |- ( x = a -> ( x F r ) = ( a F r ) ) |
|
| 91 | difeq2 | |- ( x = a -> ( A \ x ) = ( A \ a ) ) |
|
| 92 | 90 91 | eleq12d | |- ( x = a -> ( ( x F r ) e. ( A \ x ) <-> ( a F r ) e. ( A \ a ) ) ) |
| 93 | 89 92 | imbi12d | |- ( x = a -> ( ( ( ph /\ ps ) -> ( x F r ) e. ( A \ x ) ) <-> ( ( ph /\ ( ( a C_ A /\ r C_ ( a X. a ) /\ r We a ) /\ _om ~<_ a ) ) -> ( a F r ) e. ( A \ a ) ) ) ) |
| 94 | 1 2 3 4 5 6 7 | pwfseqlem3 | |- ( ( ph /\ ps ) -> ( x F r ) e. ( A \ x ) ) |
| 95 | 79 93 94 | chvarfv | |- ( ( ph /\ ( ( a C_ A /\ r C_ ( a X. a ) /\ r We a ) /\ _om ~<_ a ) ) -> ( a F r ) e. ( A \ a ) ) |
| 96 | 63 71 95 | chvarfv | |- ( ( ph /\ ( ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) /\ _om ~<_ a ) ) -> ( a F s ) e. ( A \ a ) ) |
| 97 | 96 | eldifbd | |- ( ( ph /\ ( ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) /\ _om ~<_ a ) ) -> -. ( a F s ) e. a ) |
| 98 | 97 | expr | |- ( ( ph /\ ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) ) -> ( _om ~<_ a -> -. ( a F s ) e. a ) ) |
| 99 | 55 98 | sylbird | |- ( ( ph /\ ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) ) -> ( -. a ~< _om -> -. ( a F s ) e. a ) ) |
| 100 | 99 | con4d | |- ( ( ph /\ ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) ) -> ( ( a F s ) e. a -> a ~< _om ) ) |
| 101 | 100 | ex | |- ( ph -> ( ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) -> ( ( a F s ) e. a -> a ~< _om ) ) ) |
| 102 | 33 34 46 101 | vtocl2d | |- ( ph -> ( ( Z C_ A /\ ( W ` Z ) C_ ( Z X. Z ) /\ ( W ` Z ) We Z ) -> ( ( Z F ( W ` Z ) ) e. Z -> Z ~< _om ) ) ) |
| 103 | 29 30 102 | mp2d | |- ( ph -> Z ~< _om ) |
| 104 | isfinite | |- ( Z e. Fin <-> Z ~< _om ) |
|
| 105 | 103 104 | sylibr | |- ( ph -> Z e. Fin ) |
| 106 | fvex | |- ( W ` Z ) e. _V |
|
| 107 | 1 2 3 4 5 6 7 | pwfseqlem2 | |- ( ( Z e. Fin /\ ( W ` Z ) e. _V ) -> ( Z F ( W ` Z ) ) = ( H ` ( card ` Z ) ) ) |
| 108 | 105 106 107 | sylancl | |- ( ph -> ( Z F ( W ` Z ) ) = ( H ` ( card ` Z ) ) ) |
| 109 | 108 30 | eqeltrrd | |- ( ph -> ( H ` ( card ` Z ) ) e. Z ) |
| 110 | 8 19 23 | fpwwe2lem3 | |- ( ( ph /\ ( H ` ( card ` Z ) ) e. Z ) -> ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) F ( ( W ` Z ) i^i ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) X. ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ) ) ) = ( H ` ( card ` Z ) ) ) |
| 111 | 109 110 | mpdan | |- ( ph -> ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) F ( ( W ` Z ) i^i ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) X. ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ) ) ) = ( H ` ( card ` Z ) ) ) |
| 112 | cnvimass | |- ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) C_ dom ( W ` Z ) |
|
| 113 | 31 | simprd | |- ( ph -> ( W ` Z ) C_ ( Z X. Z ) ) |
| 114 | dmss | |- ( ( W ` Z ) C_ ( Z X. Z ) -> dom ( W ` Z ) C_ dom ( Z X. Z ) ) |
|
| 115 | 113 114 | syl | |- ( ph -> dom ( W ` Z ) C_ dom ( Z X. Z ) ) |
| 116 | dmxpss | |- dom ( Z X. Z ) C_ Z |
|
| 117 | 115 116 | sstrdi | |- ( ph -> dom ( W ` Z ) C_ Z ) |
| 118 | 112 117 | sstrid | |- ( ph -> ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) C_ Z ) |
| 119 | 105 118 | ssfid | |- ( ph -> ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) e. Fin ) |
| 120 | 106 | inex1 | |- ( ( W ` Z ) i^i ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) X. ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ) ) e. _V |
| 121 | 1 2 3 4 5 6 7 | pwfseqlem2 | |- ( ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) e. Fin /\ ( ( W ` Z ) i^i ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) X. ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ) ) e. _V ) -> ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) F ( ( W ` Z ) i^i ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) X. ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ) ) ) = ( H ` ( card ` ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ) ) ) |
| 122 | 119 120 121 | sylancl | |- ( ph -> ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) F ( ( W ` Z ) i^i ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) X. ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ) ) ) = ( H ` ( card ` ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ) ) ) |
| 123 | 111 122 | eqtr3d | |- ( ph -> ( H ` ( card ` Z ) ) = ( H ` ( card ` ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ) ) ) |
| 124 | f1of1 | |- ( H : _om -1-1-onto-> X -> H : _om -1-1-> X ) |
|
| 125 | 3 124 | syl | |- ( ph -> H : _om -1-1-> X ) |
| 126 | ficardom | |- ( Z e. Fin -> ( card ` Z ) e. _om ) |
|
| 127 | 105 126 | syl | |- ( ph -> ( card ` Z ) e. _om ) |
| 128 | ficardom | |- ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) e. Fin -> ( card ` ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ) e. _om ) |
|
| 129 | 119 128 | syl | |- ( ph -> ( card ` ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ) e. _om ) |
| 130 | f1fveq | |- ( ( H : _om -1-1-> X /\ ( ( card ` Z ) e. _om /\ ( card ` ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ) e. _om ) ) -> ( ( H ` ( card ` Z ) ) = ( H ` ( card ` ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ) ) <-> ( card ` Z ) = ( card ` ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ) ) ) |
|
| 131 | 125 127 129 130 | syl12anc | |- ( ph -> ( ( H ` ( card ` Z ) ) = ( H ` ( card ` ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ) ) <-> ( card ` Z ) = ( card ` ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ) ) ) |
| 132 | 123 131 | mpbid | |- ( ph -> ( card ` Z ) = ( card ` ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ) ) |
| 133 | 132 | eqcomd | |- ( ph -> ( card ` ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ) = ( card ` Z ) ) |
| 134 | finnum | |- ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) e. Fin -> ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) e. dom card ) |
|
| 135 | 119 134 | syl | |- ( ph -> ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) e. dom card ) |
| 136 | finnum | |- ( Z e. Fin -> Z e. dom card ) |
|
| 137 | 105 136 | syl | |- ( ph -> Z e. dom card ) |
| 138 | carden2 | |- ( ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) e. dom card /\ Z e. dom card ) -> ( ( card ` ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ) = ( card ` Z ) <-> ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ~~ Z ) ) |
|
| 139 | 135 137 138 | syl2anc | |- ( ph -> ( ( card ` ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ) = ( card ` Z ) <-> ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ~~ Z ) ) |
| 140 | 133 139 | mpbid | |- ( ph -> ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ~~ Z ) |
| 141 | dfpss2 | |- ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) C. Z <-> ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) C_ Z /\ -. ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) = Z ) ) |
|
| 142 | 141 | baib | |- ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) C_ Z -> ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) C. Z <-> -. ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) = Z ) ) |
| 143 | 118 142 | syl | |- ( ph -> ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) C. Z <-> -. ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) = Z ) ) |
| 144 | php3 | |- ( ( Z e. Fin /\ ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) C. Z ) -> ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ~< Z ) |
|
| 145 | sdomnen | |- ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ~< Z -> -. ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ~~ Z ) |
|
| 146 | 144 145 | syl | |- ( ( Z e. Fin /\ ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) C. Z ) -> -. ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ~~ Z ) |
| 147 | 146 | ex | |- ( Z e. Fin -> ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) C. Z -> -. ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ~~ Z ) ) |
| 148 | 105 147 | syl | |- ( ph -> ( ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) C. Z -> -. ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ~~ Z ) ) |
| 149 | 143 148 | sylbird | |- ( ph -> ( -. ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) = Z -> -. ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ~~ Z ) ) |
| 150 | 140 149 | mt4d | |- ( ph -> ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) = Z ) |
| 151 | 109 150 | eleqtrrd | |- ( ph -> ( H ` ( card ` Z ) ) e. ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) ) |
| 152 | fvex | |- ( H ` ( card ` Z ) ) e. _V |
|
| 153 | 152 | eliniseg | |- ( ( H ` ( card ` Z ) ) e. _V -> ( ( H ` ( card ` Z ) ) e. ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) <-> ( H ` ( card ` Z ) ) ( W ` Z ) ( H ` ( card ` Z ) ) ) ) |
| 154 | 152 153 | ax-mp | |- ( ( H ` ( card ` Z ) ) e. ( `' ( W ` Z ) " { ( H ` ( card ` Z ) ) } ) <-> ( H ` ( card ` Z ) ) ( W ` Z ) ( H ` ( card ` Z ) ) ) |
| 155 | 151 154 | sylib | |- ( ph -> ( H ` ( card ` Z ) ) ( W ` Z ) ( H ` ( card ` Z ) ) ) |
| 156 | 25 | simprd | |- ( ph -> ( ( W ` Z ) We Z /\ A. b e. Z [. ( `' ( W ` Z ) " { b } ) / v ]. ( v F ( ( W ` Z ) i^i ( v X. v ) ) ) = b ) ) |
| 157 | 156 | simpld | |- ( ph -> ( W ` Z ) We Z ) |
| 158 | weso | |- ( ( W ` Z ) We Z -> ( W ` Z ) Or Z ) |
|
| 159 | 157 158 | syl | |- ( ph -> ( W ` Z ) Or Z ) |
| 160 | sonr | |- ( ( ( W ` Z ) Or Z /\ ( H ` ( card ` Z ) ) e. Z ) -> -. ( H ` ( card ` Z ) ) ( W ` Z ) ( H ` ( card ` Z ) ) ) |
|
| 161 | 159 109 160 | syl2anc | |- ( ph -> -. ( H ` ( card ` Z ) ) ( W ` Z ) ( H ` ( card ` Z ) ) ) |
| 162 | 155 161 | pm2.65i | |- -. ph |