This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implicit substitution of two classes for two setvar variables. (Contributed by Thierry Arnoux, 25-Aug-2020) (Revised by BTernaryTau, 19-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtocl2d.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| vtocl2d.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
| vtocl2d.1 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜓 ↔ 𝜒 ) ) | ||
| vtocl2d.3 | ⊢ ( 𝜑 → 𝜓 ) | ||
| Assertion | vtocl2d | ⊢ ( 𝜑 → 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtocl2d.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | vtocl2d.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 3 | vtocl2d.1 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜓 ↔ 𝜒 ) ) | |
| 4 | vtocl2d.3 | ⊢ ( 𝜑 → 𝜓 ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → 𝜓 ) |
| 6 | 3 | adantll | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → ( 𝜓 ↔ 𝜒 ) ) |
| 7 | 6 | pm5.74da | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( ( 𝑦 = 𝐵 → 𝜓 ) ↔ ( 𝑦 = 𝐵 → 𝜒 ) ) ) |
| 8 | 4 | a1d | ⊢ ( 𝜑 → ( 𝑦 = 𝐵 → 𝜓 ) ) |
| 9 | 1 7 8 | vtocld | ⊢ ( 𝜑 → ( 𝑦 = 𝐵 → 𝜒 ) ) |
| 10 | 9 | imp | ⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → 𝜒 ) |
| 11 | 5 10 | 2thd | ⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → ( 𝜓 ↔ 𝜒 ) ) |
| 12 | 2 11 4 | vtocld | ⊢ ( 𝜑 → 𝜒 ) |