This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The powerset of a Dedekind-infinite set does not inject into the set of finite sequences. The proof is due to Halbeisen and Shelah. Proposition 1.7 of KanamoriPincus p. 418. (Contributed by Mario Carneiro, 31-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwfseq | ⊢ ( ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom | ⊢ Rel ≼ | |
| 2 | 1 | brrelex2i | ⊢ ( ω ≼ 𝐴 → 𝐴 ∈ V ) |
| 3 | domeng | ⊢ ( 𝐴 ∈ V → ( ω ≼ 𝐴 ↔ ∃ 𝑡 ( ω ≈ 𝑡 ∧ 𝑡 ⊆ 𝐴 ) ) ) | |
| 4 | bren | ⊢ ( ω ≈ 𝑡 ↔ ∃ ℎ ℎ : ω –1-1-onto→ 𝑡 ) | |
| 5 | harcl | ⊢ ( har ‘ 𝒫 𝐴 ) ∈ On | |
| 6 | infxpenc2 | ⊢ ( ( har ‘ 𝒫 𝐴 ) ∈ On → ∃ 𝑚 ∀ 𝑏 ∈ ( har ‘ 𝒫 𝐴 ) ( ω ⊆ 𝑏 → ( 𝑚 ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) ) | |
| 7 | 5 6 | ax-mp | ⊢ ∃ 𝑚 ∀ 𝑏 ∈ ( har ‘ 𝒫 𝐴 ) ( ω ⊆ 𝑏 → ( 𝑚 ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) |
| 8 | simpr | ⊢ ( ( ( ( ℎ : ω –1-1-onto→ 𝑡 ∧ 𝑡 ⊆ 𝐴 ) ∧ ∀ 𝑏 ∈ ( har ‘ 𝒫 𝐴 ) ( ω ⊆ 𝑏 → ( 𝑚 ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) ) ∧ 𝑔 : 𝒫 𝐴 –1-1→ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) → 𝑔 : 𝒫 𝐴 –1-1→ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) | |
| 9 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝐴 ↑m 𝑛 ) = ( 𝐴 ↑m 𝑘 ) ) | |
| 10 | 9 | cbviunv | ⊢ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) = ∪ 𝑘 ∈ ω ( 𝐴 ↑m 𝑘 ) |
| 11 | f1eq3 | ⊢ ( ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) = ∪ 𝑘 ∈ ω ( 𝐴 ↑m 𝑘 ) → ( 𝑔 : 𝒫 𝐴 –1-1→ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ↔ 𝑔 : 𝒫 𝐴 –1-1→ ∪ 𝑘 ∈ ω ( 𝐴 ↑m 𝑘 ) ) ) | |
| 12 | 10 11 | ax-mp | ⊢ ( 𝑔 : 𝒫 𝐴 –1-1→ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ↔ 𝑔 : 𝒫 𝐴 –1-1→ ∪ 𝑘 ∈ ω ( 𝐴 ↑m 𝑘 ) ) |
| 13 | 8 12 | sylib | ⊢ ( ( ( ( ℎ : ω –1-1-onto→ 𝑡 ∧ 𝑡 ⊆ 𝐴 ) ∧ ∀ 𝑏 ∈ ( har ‘ 𝒫 𝐴 ) ( ω ⊆ 𝑏 → ( 𝑚 ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) ) ∧ 𝑔 : 𝒫 𝐴 –1-1→ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) → 𝑔 : 𝒫 𝐴 –1-1→ ∪ 𝑘 ∈ ω ( 𝐴 ↑m 𝑘 ) ) |
| 14 | simpllr | ⊢ ( ( ( ( ℎ : ω –1-1-onto→ 𝑡 ∧ 𝑡 ⊆ 𝐴 ) ∧ ∀ 𝑏 ∈ ( har ‘ 𝒫 𝐴 ) ( ω ⊆ 𝑏 → ( 𝑚 ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) ) ∧ 𝑔 : 𝒫 𝐴 –1-1→ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) → 𝑡 ⊆ 𝐴 ) | |
| 15 | simplll | ⊢ ( ( ( ( ℎ : ω –1-1-onto→ 𝑡 ∧ 𝑡 ⊆ 𝐴 ) ∧ ∀ 𝑏 ∈ ( har ‘ 𝒫 𝐴 ) ( ω ⊆ 𝑏 → ( 𝑚 ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) ) ∧ 𝑔 : 𝒫 𝐴 –1-1→ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) → ℎ : ω –1-1-onto→ 𝑡 ) | |
| 16 | biid | ⊢ ( ( ( 𝑢 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑢 × 𝑢 ) ∧ 𝑟 We 𝑢 ) ∧ ω ≼ 𝑢 ) ↔ ( ( 𝑢 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑢 × 𝑢 ) ∧ 𝑟 We 𝑢 ) ∧ ω ≼ 𝑢 ) ) | |
| 17 | simplr | ⊢ ( ( ( ( ℎ : ω –1-1-onto→ 𝑡 ∧ 𝑡 ⊆ 𝐴 ) ∧ ∀ 𝑏 ∈ ( har ‘ 𝒫 𝐴 ) ( ω ⊆ 𝑏 → ( 𝑚 ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) ) ∧ 𝑔 : 𝒫 𝐴 –1-1→ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) → ∀ 𝑏 ∈ ( har ‘ 𝒫 𝐴 ) ( ω ⊆ 𝑏 → ( 𝑚 ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) ) | |
| 18 | sseq2 | ⊢ ( 𝑏 = 𝑤 → ( ω ⊆ 𝑏 ↔ ω ⊆ 𝑤 ) ) | |
| 19 | fveq2 | ⊢ ( 𝑏 = 𝑤 → ( 𝑚 ‘ 𝑏 ) = ( 𝑚 ‘ 𝑤 ) ) | |
| 20 | 19 | f1oeq1d | ⊢ ( 𝑏 = 𝑤 → ( ( 𝑚 ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ↔ ( 𝑚 ‘ 𝑤 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) ) |
| 21 | xpeq12 | ⊢ ( ( 𝑏 = 𝑤 ∧ 𝑏 = 𝑤 ) → ( 𝑏 × 𝑏 ) = ( 𝑤 × 𝑤 ) ) | |
| 22 | 21 | anidms | ⊢ ( 𝑏 = 𝑤 → ( 𝑏 × 𝑏 ) = ( 𝑤 × 𝑤 ) ) |
| 23 | 22 | f1oeq2d | ⊢ ( 𝑏 = 𝑤 → ( ( 𝑚 ‘ 𝑤 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ↔ ( 𝑚 ‘ 𝑤 ) : ( 𝑤 × 𝑤 ) –1-1-onto→ 𝑏 ) ) |
| 24 | f1oeq3 | ⊢ ( 𝑏 = 𝑤 → ( ( 𝑚 ‘ 𝑤 ) : ( 𝑤 × 𝑤 ) –1-1-onto→ 𝑏 ↔ ( 𝑚 ‘ 𝑤 ) : ( 𝑤 × 𝑤 ) –1-1-onto→ 𝑤 ) ) | |
| 25 | 20 23 24 | 3bitrd | ⊢ ( 𝑏 = 𝑤 → ( ( 𝑚 ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ↔ ( 𝑚 ‘ 𝑤 ) : ( 𝑤 × 𝑤 ) –1-1-onto→ 𝑤 ) ) |
| 26 | 18 25 | imbi12d | ⊢ ( 𝑏 = 𝑤 → ( ( ω ⊆ 𝑏 → ( 𝑚 ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) ↔ ( ω ⊆ 𝑤 → ( 𝑚 ‘ 𝑤 ) : ( 𝑤 × 𝑤 ) –1-1-onto→ 𝑤 ) ) ) |
| 27 | 26 | cbvralvw | ⊢ ( ∀ 𝑏 ∈ ( har ‘ 𝒫 𝐴 ) ( ω ⊆ 𝑏 → ( 𝑚 ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) ↔ ∀ 𝑤 ∈ ( har ‘ 𝒫 𝐴 ) ( ω ⊆ 𝑤 → ( 𝑚 ‘ 𝑤 ) : ( 𝑤 × 𝑤 ) –1-1-onto→ 𝑤 ) ) |
| 28 | 17 27 | sylib | ⊢ ( ( ( ( ℎ : ω –1-1-onto→ 𝑡 ∧ 𝑡 ⊆ 𝐴 ) ∧ ∀ 𝑏 ∈ ( har ‘ 𝒫 𝐴 ) ( ω ⊆ 𝑏 → ( 𝑚 ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) ) ∧ 𝑔 : 𝒫 𝐴 –1-1→ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) → ∀ 𝑤 ∈ ( har ‘ 𝒫 𝐴 ) ( ω ⊆ 𝑤 → ( 𝑚 ‘ 𝑤 ) : ( 𝑤 × 𝑤 ) –1-1-onto→ 𝑤 ) ) |
| 29 | eqid | ⊢ OrdIso ( 𝑟 , 𝑢 ) = OrdIso ( 𝑟 , 𝑢 ) | |
| 30 | eqid | ⊢ ( 𝑠 ∈ dom OrdIso ( 𝑟 , 𝑢 ) , 𝑧 ∈ dom OrdIso ( 𝑟 , 𝑢 ) ↦ 〈 ( OrdIso ( 𝑟 , 𝑢 ) ‘ 𝑠 ) , ( OrdIso ( 𝑟 , 𝑢 ) ‘ 𝑧 ) 〉 ) = ( 𝑠 ∈ dom OrdIso ( 𝑟 , 𝑢 ) , 𝑧 ∈ dom OrdIso ( 𝑟 , 𝑢 ) ↦ 〈 ( OrdIso ( 𝑟 , 𝑢 ) ‘ 𝑠 ) , ( OrdIso ( 𝑟 , 𝑢 ) ‘ 𝑧 ) 〉 ) | |
| 31 | eqid | ⊢ ( ( OrdIso ( 𝑟 , 𝑢 ) ∘ ( 𝑚 ‘ dom OrdIso ( 𝑟 , 𝑢 ) ) ) ∘ ◡ ( 𝑠 ∈ dom OrdIso ( 𝑟 , 𝑢 ) , 𝑧 ∈ dom OrdIso ( 𝑟 , 𝑢 ) ↦ 〈 ( OrdIso ( 𝑟 , 𝑢 ) ‘ 𝑠 ) , ( OrdIso ( 𝑟 , 𝑢 ) ‘ 𝑧 ) 〉 ) ) = ( ( OrdIso ( 𝑟 , 𝑢 ) ∘ ( 𝑚 ‘ dom OrdIso ( 𝑟 , 𝑢 ) ) ) ∘ ◡ ( 𝑠 ∈ dom OrdIso ( 𝑟 , 𝑢 ) , 𝑧 ∈ dom OrdIso ( 𝑟 , 𝑢 ) ↦ 〈 ( OrdIso ( 𝑟 , 𝑢 ) ‘ 𝑠 ) , ( OrdIso ( 𝑟 , 𝑢 ) ‘ 𝑧 ) 〉 ) ) | |
| 32 | eqid | ⊢ seqω ( ( 𝑝 ∈ V , 𝑓 ∈ V ↦ ( 𝑥 ∈ ( 𝑢 ↑m suc 𝑝 ) ↦ ( ( 𝑓 ‘ ( 𝑥 ↾ 𝑝 ) ) ( ( OrdIso ( 𝑟 , 𝑢 ) ∘ ( 𝑚 ‘ dom OrdIso ( 𝑟 , 𝑢 ) ) ) ∘ ◡ ( 𝑠 ∈ dom OrdIso ( 𝑟 , 𝑢 ) , 𝑧 ∈ dom OrdIso ( 𝑟 , 𝑢 ) ↦ 〈 ( OrdIso ( 𝑟 , 𝑢 ) ‘ 𝑠 ) , ( OrdIso ( 𝑟 , 𝑢 ) ‘ 𝑧 ) 〉 ) ) ( 𝑥 ‘ 𝑝 ) ) ) ) , { 〈 ∅ , ( OrdIso ( 𝑟 , 𝑢 ) ‘ ∅ ) 〉 } ) = seqω ( ( 𝑝 ∈ V , 𝑓 ∈ V ↦ ( 𝑥 ∈ ( 𝑢 ↑m suc 𝑝 ) ↦ ( ( 𝑓 ‘ ( 𝑥 ↾ 𝑝 ) ) ( ( OrdIso ( 𝑟 , 𝑢 ) ∘ ( 𝑚 ‘ dom OrdIso ( 𝑟 , 𝑢 ) ) ) ∘ ◡ ( 𝑠 ∈ dom OrdIso ( 𝑟 , 𝑢 ) , 𝑧 ∈ dom OrdIso ( 𝑟 , 𝑢 ) ↦ 〈 ( OrdIso ( 𝑟 , 𝑢 ) ‘ 𝑠 ) , ( OrdIso ( 𝑟 , 𝑢 ) ‘ 𝑧 ) 〉 ) ) ( 𝑥 ‘ 𝑝 ) ) ) ) , { 〈 ∅ , ( OrdIso ( 𝑟 , 𝑢 ) ‘ ∅ ) 〉 } ) | |
| 33 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝑢 ↑m 𝑛 ) = ( 𝑢 ↑m 𝑘 ) ) | |
| 34 | 33 | cbviunv | ⊢ ∪ 𝑛 ∈ ω ( 𝑢 ↑m 𝑛 ) = ∪ 𝑘 ∈ ω ( 𝑢 ↑m 𝑘 ) |
| 35 | 34 | mpteq1i | ⊢ ( 𝑦 ∈ ∪ 𝑛 ∈ ω ( 𝑢 ↑m 𝑛 ) ↦ 〈 dom 𝑦 , ( ( seqω ( ( 𝑝 ∈ V , 𝑓 ∈ V ↦ ( 𝑥 ∈ ( 𝑢 ↑m suc 𝑝 ) ↦ ( ( 𝑓 ‘ ( 𝑥 ↾ 𝑝 ) ) ( ( OrdIso ( 𝑟 , 𝑢 ) ∘ ( 𝑚 ‘ dom OrdIso ( 𝑟 , 𝑢 ) ) ) ∘ ◡ ( 𝑠 ∈ dom OrdIso ( 𝑟 , 𝑢 ) , 𝑧 ∈ dom OrdIso ( 𝑟 , 𝑢 ) ↦ 〈 ( OrdIso ( 𝑟 , 𝑢 ) ‘ 𝑠 ) , ( OrdIso ( 𝑟 , 𝑢 ) ‘ 𝑧 ) 〉 ) ) ( 𝑥 ‘ 𝑝 ) ) ) ) , { 〈 ∅ , ( OrdIso ( 𝑟 , 𝑢 ) ‘ ∅ ) 〉 } ) ‘ dom 𝑦 ) ‘ 𝑦 ) 〉 ) = ( 𝑦 ∈ ∪ 𝑘 ∈ ω ( 𝑢 ↑m 𝑘 ) ↦ 〈 dom 𝑦 , ( ( seqω ( ( 𝑝 ∈ V , 𝑓 ∈ V ↦ ( 𝑥 ∈ ( 𝑢 ↑m suc 𝑝 ) ↦ ( ( 𝑓 ‘ ( 𝑥 ↾ 𝑝 ) ) ( ( OrdIso ( 𝑟 , 𝑢 ) ∘ ( 𝑚 ‘ dom OrdIso ( 𝑟 , 𝑢 ) ) ) ∘ ◡ ( 𝑠 ∈ dom OrdIso ( 𝑟 , 𝑢 ) , 𝑧 ∈ dom OrdIso ( 𝑟 , 𝑢 ) ↦ 〈 ( OrdIso ( 𝑟 , 𝑢 ) ‘ 𝑠 ) , ( OrdIso ( 𝑟 , 𝑢 ) ‘ 𝑧 ) 〉 ) ) ( 𝑥 ‘ 𝑝 ) ) ) ) , { 〈 ∅ , ( OrdIso ( 𝑟 , 𝑢 ) ‘ ∅ ) 〉 } ) ‘ dom 𝑦 ) ‘ 𝑦 ) 〉 ) |
| 36 | eqid | ⊢ ( 𝑥 ∈ ω , 𝑦 ∈ 𝑢 ↦ 〈 ( OrdIso ( 𝑟 , 𝑢 ) ‘ 𝑥 ) , 𝑦 〉 ) = ( 𝑥 ∈ ω , 𝑦 ∈ 𝑢 ↦ 〈 ( OrdIso ( 𝑟 , 𝑢 ) ‘ 𝑥 ) , 𝑦 〉 ) | |
| 37 | eqid | ⊢ ( ( ( ( OrdIso ( 𝑟 , 𝑢 ) ∘ ( 𝑚 ‘ dom OrdIso ( 𝑟 , 𝑢 ) ) ) ∘ ◡ ( 𝑠 ∈ dom OrdIso ( 𝑟 , 𝑢 ) , 𝑧 ∈ dom OrdIso ( 𝑟 , 𝑢 ) ↦ 〈 ( OrdIso ( 𝑟 , 𝑢 ) ‘ 𝑠 ) , ( OrdIso ( 𝑟 , 𝑢 ) ‘ 𝑧 ) 〉 ) ) ∘ ( 𝑥 ∈ ω , 𝑦 ∈ 𝑢 ↦ 〈 ( OrdIso ( 𝑟 , 𝑢 ) ‘ 𝑥 ) , 𝑦 〉 ) ) ∘ ( 𝑦 ∈ ∪ 𝑛 ∈ ω ( 𝑢 ↑m 𝑛 ) ↦ 〈 dom 𝑦 , ( ( seqω ( ( 𝑝 ∈ V , 𝑓 ∈ V ↦ ( 𝑥 ∈ ( 𝑢 ↑m suc 𝑝 ) ↦ ( ( 𝑓 ‘ ( 𝑥 ↾ 𝑝 ) ) ( ( OrdIso ( 𝑟 , 𝑢 ) ∘ ( 𝑚 ‘ dom OrdIso ( 𝑟 , 𝑢 ) ) ) ∘ ◡ ( 𝑠 ∈ dom OrdIso ( 𝑟 , 𝑢 ) , 𝑧 ∈ dom OrdIso ( 𝑟 , 𝑢 ) ↦ 〈 ( OrdIso ( 𝑟 , 𝑢 ) ‘ 𝑠 ) , ( OrdIso ( 𝑟 , 𝑢 ) ‘ 𝑧 ) 〉 ) ) ( 𝑥 ‘ 𝑝 ) ) ) ) , { 〈 ∅ , ( OrdIso ( 𝑟 , 𝑢 ) ‘ ∅ ) 〉 } ) ‘ dom 𝑦 ) ‘ 𝑦 ) 〉 ) ) = ( ( ( ( OrdIso ( 𝑟 , 𝑢 ) ∘ ( 𝑚 ‘ dom OrdIso ( 𝑟 , 𝑢 ) ) ) ∘ ◡ ( 𝑠 ∈ dom OrdIso ( 𝑟 , 𝑢 ) , 𝑧 ∈ dom OrdIso ( 𝑟 , 𝑢 ) ↦ 〈 ( OrdIso ( 𝑟 , 𝑢 ) ‘ 𝑠 ) , ( OrdIso ( 𝑟 , 𝑢 ) ‘ 𝑧 ) 〉 ) ) ∘ ( 𝑥 ∈ ω , 𝑦 ∈ 𝑢 ↦ 〈 ( OrdIso ( 𝑟 , 𝑢 ) ‘ 𝑥 ) , 𝑦 〉 ) ) ∘ ( 𝑦 ∈ ∪ 𝑛 ∈ ω ( 𝑢 ↑m 𝑛 ) ↦ 〈 dom 𝑦 , ( ( seqω ( ( 𝑝 ∈ V , 𝑓 ∈ V ↦ ( 𝑥 ∈ ( 𝑢 ↑m suc 𝑝 ) ↦ ( ( 𝑓 ‘ ( 𝑥 ↾ 𝑝 ) ) ( ( OrdIso ( 𝑟 , 𝑢 ) ∘ ( 𝑚 ‘ dom OrdIso ( 𝑟 , 𝑢 ) ) ) ∘ ◡ ( 𝑠 ∈ dom OrdIso ( 𝑟 , 𝑢 ) , 𝑧 ∈ dom OrdIso ( 𝑟 , 𝑢 ) ↦ 〈 ( OrdIso ( 𝑟 , 𝑢 ) ‘ 𝑠 ) , ( OrdIso ( 𝑟 , 𝑢 ) ‘ 𝑧 ) 〉 ) ) ( 𝑥 ‘ 𝑝 ) ) ) ) , { 〈 ∅ , ( OrdIso ( 𝑟 , 𝑢 ) ‘ ∅ ) 〉 } ) ‘ dom 𝑦 ) ‘ 𝑦 ) 〉 ) ) | |
| 38 | 13 14 15 16 28 29 30 31 32 35 36 37 | pwfseqlem5 | ⊢ ¬ ( ( ( ℎ : ω –1-1-onto→ 𝑡 ∧ 𝑡 ⊆ 𝐴 ) ∧ ∀ 𝑏 ∈ ( har ‘ 𝒫 𝐴 ) ( ω ⊆ 𝑏 → ( 𝑚 ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) ) ∧ 𝑔 : 𝒫 𝐴 –1-1→ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) |
| 39 | 38 | imnani | ⊢ ( ( ( ℎ : ω –1-1-onto→ 𝑡 ∧ 𝑡 ⊆ 𝐴 ) ∧ ∀ 𝑏 ∈ ( har ‘ 𝒫 𝐴 ) ( ω ⊆ 𝑏 → ( 𝑚 ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) ) → ¬ 𝑔 : 𝒫 𝐴 –1-1→ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) |
| 40 | 39 | nexdv | ⊢ ( ( ( ℎ : ω –1-1-onto→ 𝑡 ∧ 𝑡 ⊆ 𝐴 ) ∧ ∀ 𝑏 ∈ ( har ‘ 𝒫 𝐴 ) ( ω ⊆ 𝑏 → ( 𝑚 ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) ) → ¬ ∃ 𝑔 𝑔 : 𝒫 𝐴 –1-1→ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) |
| 41 | brdomi | ⊢ ( 𝒫 𝐴 ≼ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) → ∃ 𝑔 𝑔 : 𝒫 𝐴 –1-1→ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) | |
| 42 | 40 41 | nsyl | ⊢ ( ( ( ℎ : ω –1-1-onto→ 𝑡 ∧ 𝑡 ⊆ 𝐴 ) ∧ ∀ 𝑏 ∈ ( har ‘ 𝒫 𝐴 ) ( ω ⊆ 𝑏 → ( 𝑚 ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) ) → ¬ 𝒫 𝐴 ≼ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) |
| 43 | 42 | ex | ⊢ ( ( ℎ : ω –1-1-onto→ 𝑡 ∧ 𝑡 ⊆ 𝐴 ) → ( ∀ 𝑏 ∈ ( har ‘ 𝒫 𝐴 ) ( ω ⊆ 𝑏 → ( 𝑚 ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) → ¬ 𝒫 𝐴 ≼ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) ) |
| 44 | 43 | exlimdv | ⊢ ( ( ℎ : ω –1-1-onto→ 𝑡 ∧ 𝑡 ⊆ 𝐴 ) → ( ∃ 𝑚 ∀ 𝑏 ∈ ( har ‘ 𝒫 𝐴 ) ( ω ⊆ 𝑏 → ( 𝑚 ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) → ¬ 𝒫 𝐴 ≼ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) ) |
| 45 | 7 44 | mpi | ⊢ ( ( ℎ : ω –1-1-onto→ 𝑡 ∧ 𝑡 ⊆ 𝐴 ) → ¬ 𝒫 𝐴 ≼ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) |
| 46 | 45 | ex | ⊢ ( ℎ : ω –1-1-onto→ 𝑡 → ( 𝑡 ⊆ 𝐴 → ¬ 𝒫 𝐴 ≼ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) ) |
| 47 | 46 | exlimiv | ⊢ ( ∃ ℎ ℎ : ω –1-1-onto→ 𝑡 → ( 𝑡 ⊆ 𝐴 → ¬ 𝒫 𝐴 ≼ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) ) |
| 48 | 4 47 | sylbi | ⊢ ( ω ≈ 𝑡 → ( 𝑡 ⊆ 𝐴 → ¬ 𝒫 𝐴 ≼ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) ) |
| 49 | 48 | imp | ⊢ ( ( ω ≈ 𝑡 ∧ 𝑡 ⊆ 𝐴 ) → ¬ 𝒫 𝐴 ≼ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) |
| 50 | 49 | exlimiv | ⊢ ( ∃ 𝑡 ( ω ≈ 𝑡 ∧ 𝑡 ⊆ 𝐴 ) → ¬ 𝒫 𝐴 ≼ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) |
| 51 | 3 50 | biimtrdi | ⊢ ( 𝐴 ∈ V → ( ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) ) |
| 52 | 2 51 | mpcom | ⊢ ( ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) |