This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pwfseq . Using the construction D from pwfseqlem1 , produce a function F that maps any well-ordered infinite set to an element outside the set. (Contributed by Mario Carneiro, 31-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwfseqlem4.g | ⊢ ( 𝜑 → 𝐺 : 𝒫 𝐴 –1-1→ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) | |
| pwfseqlem4.x | ⊢ ( 𝜑 → 𝑋 ⊆ 𝐴 ) | ||
| pwfseqlem4.h | ⊢ ( 𝜑 → 𝐻 : ω –1-1-onto→ 𝑋 ) | ||
| pwfseqlem4.ps | ⊢ ( 𝜓 ↔ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ∧ ω ≼ 𝑥 ) ) | ||
| pwfseqlem4.k | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐾 : ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) –1-1→ 𝑥 ) | ||
| pwfseqlem4.d | ⊢ 𝐷 = ( 𝐺 ‘ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) | ||
| pwfseqlem4.f | ⊢ 𝐹 = ( 𝑥 ∈ V , 𝑟 ∈ V ↦ if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) ) | ||
| Assertion | pwfseqlem3 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑥 𝐹 𝑟 ) ∈ ( 𝐴 ∖ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwfseqlem4.g | ⊢ ( 𝜑 → 𝐺 : 𝒫 𝐴 –1-1→ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) | |
| 2 | pwfseqlem4.x | ⊢ ( 𝜑 → 𝑋 ⊆ 𝐴 ) | |
| 3 | pwfseqlem4.h | ⊢ ( 𝜑 → 𝐻 : ω –1-1-onto→ 𝑋 ) | |
| 4 | pwfseqlem4.ps | ⊢ ( 𝜓 ↔ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ∧ ω ≼ 𝑥 ) ) | |
| 5 | pwfseqlem4.k | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐾 : ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) –1-1→ 𝑥 ) | |
| 6 | pwfseqlem4.d | ⊢ 𝐷 = ( 𝐺 ‘ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) | |
| 7 | pwfseqlem4.f | ⊢ 𝐹 = ( 𝑥 ∈ V , 𝑟 ∈ V ↦ if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) ) | |
| 8 | vex | ⊢ 𝑥 ∈ V | |
| 9 | vex | ⊢ 𝑟 ∈ V | |
| 10 | fvex | ⊢ ( 𝐻 ‘ ( card ‘ 𝑥 ) ) ∈ V | |
| 11 | fvex | ⊢ ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ∈ V | |
| 12 | 10 11 | ifex | ⊢ if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) ∈ V |
| 13 | 7 | ovmpt4g | ⊢ ( ( 𝑥 ∈ V ∧ 𝑟 ∈ V ∧ if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) ∈ V ) → ( 𝑥 𝐹 𝑟 ) = if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) ) |
| 14 | 8 9 12 13 | mp3an | ⊢ ( 𝑥 𝐹 𝑟 ) = if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) |
| 15 | 4 | simprbi | ⊢ ( 𝜓 → ω ≼ 𝑥 ) |
| 16 | 15 | adantl | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ω ≼ 𝑥 ) |
| 17 | domnsym | ⊢ ( ω ≼ 𝑥 → ¬ 𝑥 ≺ ω ) | |
| 18 | 16 17 | syl | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ¬ 𝑥 ≺ ω ) |
| 19 | isfinite | ⊢ ( 𝑥 ∈ Fin ↔ 𝑥 ≺ ω ) | |
| 20 | 18 19 | sylnibr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ¬ 𝑥 ∈ Fin ) |
| 21 | 20 | iffalsed | ⊢ ( ( 𝜑 ∧ 𝜓 ) → if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) = ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) |
| 22 | 14 21 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑥 𝐹 𝑟 ) = ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) |
| 23 | 1 2 3 4 5 6 | pwfseqlem1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐷 ∈ ( ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ∖ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) ) |
| 24 | eldif | ⊢ ( 𝐷 ∈ ( ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ∖ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) ↔ ( 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ∧ ¬ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) ) | |
| 25 | 23 24 | sylib | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ∧ ¬ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) ) |
| 26 | 25 | simpld | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) |
| 27 | eliun | ⊢ ( 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ↔ ∃ 𝑛 ∈ ω 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) | |
| 28 | 26 27 | sylib | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ∃ 𝑛 ∈ ω 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) |
| 29 | elmapi | ⊢ ( 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) → 𝐷 : 𝑛 ⟶ 𝐴 ) | |
| 30 | 29 | ad2antll | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → 𝐷 : 𝑛 ⟶ 𝐴 ) |
| 31 | ssiun2 | ⊢ ( 𝑛 ∈ ω → ( 𝑥 ↑m 𝑛 ) ⊆ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) | |
| 32 | 31 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → ( 𝑥 ↑m 𝑛 ) ⊆ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) |
| 33 | 25 | simprd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ¬ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) |
| 34 | 33 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → ¬ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) |
| 35 | 32 34 | ssneldd | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → ¬ 𝐷 ∈ ( 𝑥 ↑m 𝑛 ) ) |
| 36 | vex | ⊢ 𝑛 ∈ V | |
| 37 | 8 36 | elmap | ⊢ ( 𝐷 ∈ ( 𝑥 ↑m 𝑛 ) ↔ 𝐷 : 𝑛 ⟶ 𝑥 ) |
| 38 | ffn | ⊢ ( 𝐷 : 𝑛 ⟶ 𝐴 → 𝐷 Fn 𝑛 ) | |
| 39 | ffnfv | ⊢ ( 𝐷 : 𝑛 ⟶ 𝑥 ↔ ( 𝐷 Fn 𝑛 ∧ ∀ 𝑧 ∈ 𝑛 ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) ) | |
| 40 | 39 | baib | ⊢ ( 𝐷 Fn 𝑛 → ( 𝐷 : 𝑛 ⟶ 𝑥 ↔ ∀ 𝑧 ∈ 𝑛 ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) ) |
| 41 | 30 38 40 | 3syl | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → ( 𝐷 : 𝑛 ⟶ 𝑥 ↔ ∀ 𝑧 ∈ 𝑛 ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) ) |
| 42 | 37 41 | bitrid | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → ( 𝐷 ∈ ( 𝑥 ↑m 𝑛 ) ↔ ∀ 𝑧 ∈ 𝑛 ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) ) |
| 43 | 35 42 | mtbid | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → ¬ ∀ 𝑧 ∈ 𝑛 ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) |
| 44 | nnon | ⊢ ( 𝑛 ∈ ω → 𝑛 ∈ On ) | |
| 45 | 44 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → 𝑛 ∈ On ) |
| 46 | ssrab2 | ⊢ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ⊆ ω | |
| 47 | omsson | ⊢ ω ⊆ On | |
| 48 | 46 47 | sstri | ⊢ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ⊆ On |
| 49 | ordom | ⊢ Ord ω | |
| 50 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → 𝑛 ∈ ω ) | |
| 51 | ordelss | ⊢ ( ( Ord ω ∧ 𝑛 ∈ ω ) → 𝑛 ⊆ ω ) | |
| 52 | 49 50 51 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → 𝑛 ⊆ ω ) |
| 53 | rexnal | ⊢ ( ∃ 𝑧 ∈ 𝑛 ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ↔ ¬ ∀ 𝑧 ∈ 𝑛 ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) | |
| 54 | 43 53 | sylibr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → ∃ 𝑧 ∈ 𝑛 ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) |
| 55 | ssrexv | ⊢ ( 𝑛 ⊆ ω → ( ∃ 𝑧 ∈ 𝑛 ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 → ∃ 𝑧 ∈ ω ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) ) | |
| 56 | 52 54 55 | sylc | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → ∃ 𝑧 ∈ ω ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) |
| 57 | rabn0 | ⊢ ( { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ≠ ∅ ↔ ∃ 𝑧 ∈ ω ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) | |
| 58 | 56 57 | sylibr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ≠ ∅ ) |
| 59 | onint | ⊢ ( ( { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ⊆ On ∧ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ≠ ∅ ) → ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ∈ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) | |
| 60 | 48 58 59 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ∈ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) |
| 61 | 48 60 | sselid | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ∈ On ) |
| 62 | ontri1 | ⊢ ( ( 𝑛 ∈ On ∧ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ∈ On ) → ( 𝑛 ⊆ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ↔ ¬ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ∈ 𝑛 ) ) | |
| 63 | 45 61 62 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → ( 𝑛 ⊆ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ↔ ¬ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ∈ 𝑛 ) ) |
| 64 | ssintrab | ⊢ ( 𝑛 ⊆ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ↔ ∀ 𝑧 ∈ ω ( ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 → 𝑛 ⊆ 𝑧 ) ) | |
| 65 | nnon | ⊢ ( 𝑧 ∈ ω → 𝑧 ∈ On ) | |
| 66 | ontri1 | ⊢ ( ( 𝑛 ∈ On ∧ 𝑧 ∈ On ) → ( 𝑛 ⊆ 𝑧 ↔ ¬ 𝑧 ∈ 𝑛 ) ) | |
| 67 | 44 65 66 | syl2an | ⊢ ( ( 𝑛 ∈ ω ∧ 𝑧 ∈ ω ) → ( 𝑛 ⊆ 𝑧 ↔ ¬ 𝑧 ∈ 𝑛 ) ) |
| 68 | 67 | imbi2d | ⊢ ( ( 𝑛 ∈ ω ∧ 𝑧 ∈ ω ) → ( ( ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 → 𝑛 ⊆ 𝑧 ) ↔ ( ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 → ¬ 𝑧 ∈ 𝑛 ) ) ) |
| 69 | con34b | ⊢ ( ( 𝑧 ∈ 𝑛 → ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) ↔ ( ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 → ¬ 𝑧 ∈ 𝑛 ) ) | |
| 70 | 68 69 | bitr4di | ⊢ ( ( 𝑛 ∈ ω ∧ 𝑧 ∈ ω ) → ( ( ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 → 𝑛 ⊆ 𝑧 ) ↔ ( 𝑧 ∈ 𝑛 → ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) ) ) |
| 71 | 70 | pm5.74da | ⊢ ( 𝑛 ∈ ω → ( ( 𝑧 ∈ ω → ( ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 → 𝑛 ⊆ 𝑧 ) ) ↔ ( 𝑧 ∈ ω → ( 𝑧 ∈ 𝑛 → ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) ) ) ) |
| 72 | bi2.04 | ⊢ ( ( 𝑧 ∈ ω → ( 𝑧 ∈ 𝑛 → ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) ) ↔ ( 𝑧 ∈ 𝑛 → ( 𝑧 ∈ ω → ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) ) ) | |
| 73 | 71 72 | bitrdi | ⊢ ( 𝑛 ∈ ω → ( ( 𝑧 ∈ ω → ( ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 → 𝑛 ⊆ 𝑧 ) ) ↔ ( 𝑧 ∈ 𝑛 → ( 𝑧 ∈ ω → ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) ) ) ) |
| 74 | elnn | ⊢ ( ( 𝑧 ∈ 𝑛 ∧ 𝑛 ∈ ω ) → 𝑧 ∈ ω ) | |
| 75 | pm2.27 | ⊢ ( 𝑧 ∈ ω → ( ( 𝑧 ∈ ω → ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) → ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) ) | |
| 76 | 74 75 | syl | ⊢ ( ( 𝑧 ∈ 𝑛 ∧ 𝑛 ∈ ω ) → ( ( 𝑧 ∈ ω → ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) → ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) ) |
| 77 | 76 | expcom | ⊢ ( 𝑛 ∈ ω → ( 𝑧 ∈ 𝑛 → ( ( 𝑧 ∈ ω → ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) → ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) ) ) |
| 78 | 77 | a2d | ⊢ ( 𝑛 ∈ ω → ( ( 𝑧 ∈ 𝑛 → ( 𝑧 ∈ ω → ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) ) → ( 𝑧 ∈ 𝑛 → ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) ) ) |
| 79 | 73 78 | sylbid | ⊢ ( 𝑛 ∈ ω → ( ( 𝑧 ∈ ω → ( ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 → 𝑛 ⊆ 𝑧 ) ) → ( 𝑧 ∈ 𝑛 → ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) ) ) |
| 80 | 79 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → ( ( 𝑧 ∈ ω → ( ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 → 𝑛 ⊆ 𝑧 ) ) → ( 𝑧 ∈ 𝑛 → ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) ) ) |
| 81 | 80 | ralimdv2 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → ( ∀ 𝑧 ∈ ω ( ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 → 𝑛 ⊆ 𝑧 ) → ∀ 𝑧 ∈ 𝑛 ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) ) |
| 82 | 64 81 | biimtrid | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → ( 𝑛 ⊆ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } → ∀ 𝑧 ∈ 𝑛 ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) ) |
| 83 | 63 82 | sylbird | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → ( ¬ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ∈ 𝑛 → ∀ 𝑧 ∈ 𝑛 ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) ) |
| 84 | 43 83 | mt3d | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ∈ 𝑛 ) |
| 85 | 30 84 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ∈ 𝐴 ) |
| 86 | fveq2 | ⊢ ( 𝑦 = ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } → ( 𝐷 ‘ 𝑦 ) = ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) | |
| 87 | 86 | eleq1d | ⊢ ( 𝑦 = ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } → ( ( 𝐷 ‘ 𝑦 ) ∈ 𝑥 ↔ ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ∈ 𝑥 ) ) |
| 88 | 87 | notbid | ⊢ ( 𝑦 = ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } → ( ¬ ( 𝐷 ‘ 𝑦 ) ∈ 𝑥 ↔ ¬ ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ∈ 𝑥 ) ) |
| 89 | fveq2 | ⊢ ( 𝑧 = 𝑦 → ( 𝐷 ‘ 𝑧 ) = ( 𝐷 ‘ 𝑦 ) ) | |
| 90 | 89 | eleq1d | ⊢ ( 𝑧 = 𝑦 → ( ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ↔ ( 𝐷 ‘ 𝑦 ) ∈ 𝑥 ) ) |
| 91 | 90 | notbid | ⊢ ( 𝑧 = 𝑦 → ( ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ↔ ¬ ( 𝐷 ‘ 𝑦 ) ∈ 𝑥 ) ) |
| 92 | 91 | cbvrabv | ⊢ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } = { 𝑦 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑦 ) ∈ 𝑥 } |
| 93 | 88 92 | elrab2 | ⊢ ( ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ∈ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ↔ ( ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ∈ ω ∧ ¬ ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ∈ 𝑥 ) ) |
| 94 | 93 | simprbi | ⊢ ( ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ∈ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } → ¬ ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ∈ 𝑥 ) |
| 95 | 60 94 | syl | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → ¬ ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ∈ 𝑥 ) |
| 96 | 85 95 | eldifd | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ∈ ( 𝐴 ∖ 𝑥 ) ) |
| 97 | 28 96 | rexlimddv | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ∈ ( 𝐴 ∖ 𝑥 ) ) |
| 98 | 22 97 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑥 𝐹 𝑟 ) ∈ ( 𝐴 ∖ 𝑥 ) ) |