This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pwfseq . (Contributed by Mario Carneiro, 18-Nov-2014) (Revised by AV, 18-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwfseqlem4.g | ⊢ ( 𝜑 → 𝐺 : 𝒫 𝐴 –1-1→ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) | |
| pwfseqlem4.x | ⊢ ( 𝜑 → 𝑋 ⊆ 𝐴 ) | ||
| pwfseqlem4.h | ⊢ ( 𝜑 → 𝐻 : ω –1-1-onto→ 𝑋 ) | ||
| pwfseqlem4.ps | ⊢ ( 𝜓 ↔ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ∧ ω ≼ 𝑥 ) ) | ||
| pwfseqlem4.k | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐾 : ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) –1-1→ 𝑥 ) | ||
| pwfseqlem4.d | ⊢ 𝐷 = ( 𝐺 ‘ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) | ||
| pwfseqlem4.f | ⊢ 𝐹 = ( 𝑥 ∈ V , 𝑟 ∈ V ↦ if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) ) | ||
| Assertion | pwfseqlem2 | ⊢ ( ( 𝑌 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( 𝑌 𝐹 𝑅 ) = ( 𝐻 ‘ ( card ‘ 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwfseqlem4.g | ⊢ ( 𝜑 → 𝐺 : 𝒫 𝐴 –1-1→ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) | |
| 2 | pwfseqlem4.x | ⊢ ( 𝜑 → 𝑋 ⊆ 𝐴 ) | |
| 3 | pwfseqlem4.h | ⊢ ( 𝜑 → 𝐻 : ω –1-1-onto→ 𝑋 ) | |
| 4 | pwfseqlem4.ps | ⊢ ( 𝜓 ↔ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ∧ ω ≼ 𝑥 ) ) | |
| 5 | pwfseqlem4.k | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐾 : ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) –1-1→ 𝑥 ) | |
| 6 | pwfseqlem4.d | ⊢ 𝐷 = ( 𝐺 ‘ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) | |
| 7 | pwfseqlem4.f | ⊢ 𝐹 = ( 𝑥 ∈ V , 𝑟 ∈ V ↦ if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) ) | |
| 8 | oveq1 | ⊢ ( 𝑎 = 𝑌 → ( 𝑎 𝐹 𝑠 ) = ( 𝑌 𝐹 𝑠 ) ) | |
| 9 | 2fveq3 | ⊢ ( 𝑎 = 𝑌 → ( 𝐻 ‘ ( card ‘ 𝑎 ) ) = ( 𝐻 ‘ ( card ‘ 𝑌 ) ) ) | |
| 10 | 8 9 | eqeq12d | ⊢ ( 𝑎 = 𝑌 → ( ( 𝑎 𝐹 𝑠 ) = ( 𝐻 ‘ ( card ‘ 𝑎 ) ) ↔ ( 𝑌 𝐹 𝑠 ) = ( 𝐻 ‘ ( card ‘ 𝑌 ) ) ) ) |
| 11 | oveq2 | ⊢ ( 𝑠 = 𝑅 → ( 𝑌 𝐹 𝑠 ) = ( 𝑌 𝐹 𝑅 ) ) | |
| 12 | 11 | eqeq1d | ⊢ ( 𝑠 = 𝑅 → ( ( 𝑌 𝐹 𝑠 ) = ( 𝐻 ‘ ( card ‘ 𝑌 ) ) ↔ ( 𝑌 𝐹 𝑅 ) = ( 𝐻 ‘ ( card ‘ 𝑌 ) ) ) ) |
| 13 | nfcv | ⊢ Ⅎ 𝑥 𝑎 | |
| 14 | nfcv | ⊢ Ⅎ 𝑟 𝑎 | |
| 15 | nfcv | ⊢ Ⅎ 𝑟 𝑠 | |
| 16 | nfmpo1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ V , 𝑟 ∈ V ↦ if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) ) | |
| 17 | 7 16 | nfcxfr | ⊢ Ⅎ 𝑥 𝐹 |
| 18 | nfcv | ⊢ Ⅎ 𝑥 𝑟 | |
| 19 | 13 17 18 | nfov | ⊢ Ⅎ 𝑥 ( 𝑎 𝐹 𝑟 ) |
| 20 | 19 | nfeq1 | ⊢ Ⅎ 𝑥 ( 𝑎 𝐹 𝑟 ) = ( 𝐻 ‘ ( card ‘ 𝑎 ) ) |
| 21 | nfmpo2 | ⊢ Ⅎ 𝑟 ( 𝑥 ∈ V , 𝑟 ∈ V ↦ if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) ) | |
| 22 | 7 21 | nfcxfr | ⊢ Ⅎ 𝑟 𝐹 |
| 23 | 14 22 15 | nfov | ⊢ Ⅎ 𝑟 ( 𝑎 𝐹 𝑠 ) |
| 24 | 23 | nfeq1 | ⊢ Ⅎ 𝑟 ( 𝑎 𝐹 𝑠 ) = ( 𝐻 ‘ ( card ‘ 𝑎 ) ) |
| 25 | oveq1 | ⊢ ( 𝑥 = 𝑎 → ( 𝑥 𝐹 𝑟 ) = ( 𝑎 𝐹 𝑟 ) ) | |
| 26 | 2fveq3 | ⊢ ( 𝑥 = 𝑎 → ( 𝐻 ‘ ( card ‘ 𝑥 ) ) = ( 𝐻 ‘ ( card ‘ 𝑎 ) ) ) | |
| 27 | 25 26 | eqeq12d | ⊢ ( 𝑥 = 𝑎 → ( ( 𝑥 𝐹 𝑟 ) = ( 𝐻 ‘ ( card ‘ 𝑥 ) ) ↔ ( 𝑎 𝐹 𝑟 ) = ( 𝐻 ‘ ( card ‘ 𝑎 ) ) ) ) |
| 28 | oveq2 | ⊢ ( 𝑟 = 𝑠 → ( 𝑎 𝐹 𝑟 ) = ( 𝑎 𝐹 𝑠 ) ) | |
| 29 | 28 | eqeq1d | ⊢ ( 𝑟 = 𝑠 → ( ( 𝑎 𝐹 𝑟 ) = ( 𝐻 ‘ ( card ‘ 𝑎 ) ) ↔ ( 𝑎 𝐹 𝑠 ) = ( 𝐻 ‘ ( card ‘ 𝑎 ) ) ) ) |
| 30 | vex | ⊢ 𝑥 ∈ V | |
| 31 | vex | ⊢ 𝑟 ∈ V | |
| 32 | fvex | ⊢ ( 𝐻 ‘ ( card ‘ 𝑥 ) ) ∈ V | |
| 33 | fvex | ⊢ ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ∈ V | |
| 34 | 32 33 | ifex | ⊢ if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) ∈ V |
| 35 | 7 | ovmpt4g | ⊢ ( ( 𝑥 ∈ V ∧ 𝑟 ∈ V ∧ if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) ∈ V ) → ( 𝑥 𝐹 𝑟 ) = if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) ) |
| 36 | 30 31 34 35 | mp3an | ⊢ ( 𝑥 𝐹 𝑟 ) = if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) |
| 37 | iftrue | ⊢ ( 𝑥 ∈ Fin → if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) = ( 𝐻 ‘ ( card ‘ 𝑥 ) ) ) | |
| 38 | 36 37 | eqtrid | ⊢ ( 𝑥 ∈ Fin → ( 𝑥 𝐹 𝑟 ) = ( 𝐻 ‘ ( card ‘ 𝑥 ) ) ) |
| 39 | 38 | adantr | ⊢ ( ( 𝑥 ∈ Fin ∧ 𝑟 ∈ 𝑉 ) → ( 𝑥 𝐹 𝑟 ) = ( 𝐻 ‘ ( card ‘ 𝑥 ) ) ) |
| 40 | 13 14 15 20 24 27 29 39 | vtocl2gaf | ⊢ ( ( 𝑎 ∈ Fin ∧ 𝑠 ∈ 𝑉 ) → ( 𝑎 𝐹 𝑠 ) = ( 𝐻 ‘ ( card ‘ 𝑎 ) ) ) |
| 41 | 10 12 40 | vtocl2ga | ⊢ ( ( 𝑌 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( 𝑌 𝐹 𝑅 ) = ( 𝐻 ‘ ( card ‘ 𝑌 ) ) ) |