This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive integer is irreducible over ZZ iff it is a prime number. (Contributed by Mario Carneiro, 5-Dec-2014) (Revised by AV, 10-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | prmirred.i | ⊢ 𝐼 = ( Irred ‘ ℤring ) | |
| Assertion | prmirredlem | ⊢ ( 𝐴 ∈ ℕ → ( 𝐴 ∈ 𝐼 ↔ 𝐴 ∈ ℙ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmirred.i | ⊢ 𝐼 = ( Irred ‘ ℤring ) | |
| 2 | zringring | ⊢ ℤring ∈ Ring | |
| 3 | zring1 | ⊢ 1 = ( 1r ‘ ℤring ) | |
| 4 | 1 3 | irredn1 | ⊢ ( ( ℤring ∈ Ring ∧ 𝐴 ∈ 𝐼 ) → 𝐴 ≠ 1 ) |
| 5 | 2 4 | mpan | ⊢ ( 𝐴 ∈ 𝐼 → 𝐴 ≠ 1 ) |
| 6 | 5 | anim2i | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) → ( 𝐴 ∈ ℕ ∧ 𝐴 ≠ 1 ) ) |
| 7 | eluz2b3 | ⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝐴 ∈ ℕ ∧ 𝐴 ≠ 1 ) ) | |
| 8 | 6 7 | sylibr | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) → 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) |
| 9 | nnz | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℤ ) | |
| 10 | 9 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → 𝑦 ∈ ℤ ) |
| 11 | simprr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → 𝑦 ∥ 𝐴 ) | |
| 12 | nnne0 | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ≠ 0 ) | |
| 13 | 12 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → 𝑦 ≠ 0 ) |
| 14 | nnz | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℤ ) | |
| 15 | 14 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → 𝐴 ∈ ℤ ) |
| 16 | dvdsval2 | ⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ∧ 𝐴 ∈ ℤ ) → ( 𝑦 ∥ 𝐴 ↔ ( 𝐴 / 𝑦 ) ∈ ℤ ) ) | |
| 17 | 10 13 15 16 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → ( 𝑦 ∥ 𝐴 ↔ ( 𝐴 / 𝑦 ) ∈ ℤ ) ) |
| 18 | 11 17 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → ( 𝐴 / 𝑦 ) ∈ ℤ ) |
| 19 | 15 | zcnd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → 𝐴 ∈ ℂ ) |
| 20 | nncn | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) | |
| 21 | 20 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → 𝑦 ∈ ℂ ) |
| 22 | 19 21 13 | divcan2d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → ( 𝑦 · ( 𝐴 / 𝑦 ) ) = 𝐴 ) |
| 23 | simplr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → 𝐴 ∈ 𝐼 ) | |
| 24 | 22 23 | eqeltrd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → ( 𝑦 · ( 𝐴 / 𝑦 ) ) ∈ 𝐼 ) |
| 25 | zringbas | ⊢ ℤ = ( Base ‘ ℤring ) | |
| 26 | eqid | ⊢ ( Unit ‘ ℤring ) = ( Unit ‘ ℤring ) | |
| 27 | zringmulr | ⊢ · = ( .r ‘ ℤring ) | |
| 28 | 1 25 26 27 | irredmul | ⊢ ( ( 𝑦 ∈ ℤ ∧ ( 𝐴 / 𝑦 ) ∈ ℤ ∧ ( 𝑦 · ( 𝐴 / 𝑦 ) ) ∈ 𝐼 ) → ( 𝑦 ∈ ( Unit ‘ ℤring ) ∨ ( 𝐴 / 𝑦 ) ∈ ( Unit ‘ ℤring ) ) ) |
| 29 | 10 18 24 28 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → ( 𝑦 ∈ ( Unit ‘ ℤring ) ∨ ( 𝐴 / 𝑦 ) ∈ ( Unit ‘ ℤring ) ) ) |
| 30 | zringunit | ⊢ ( 𝑦 ∈ ( Unit ‘ ℤring ) ↔ ( 𝑦 ∈ ℤ ∧ ( abs ‘ 𝑦 ) = 1 ) ) | |
| 31 | 30 | baib | ⊢ ( 𝑦 ∈ ℤ → ( 𝑦 ∈ ( Unit ‘ ℤring ) ↔ ( abs ‘ 𝑦 ) = 1 ) ) |
| 32 | 10 31 | syl | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → ( 𝑦 ∈ ( Unit ‘ ℤring ) ↔ ( abs ‘ 𝑦 ) = 1 ) ) |
| 33 | nnnn0 | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℕ0 ) | |
| 34 | nn0re | ⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℝ ) | |
| 35 | nn0ge0 | ⊢ ( 𝑦 ∈ ℕ0 → 0 ≤ 𝑦 ) | |
| 36 | 34 35 | absidd | ⊢ ( 𝑦 ∈ ℕ0 → ( abs ‘ 𝑦 ) = 𝑦 ) |
| 37 | 33 36 | syl | ⊢ ( 𝑦 ∈ ℕ → ( abs ‘ 𝑦 ) = 𝑦 ) |
| 38 | 37 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → ( abs ‘ 𝑦 ) = 𝑦 ) |
| 39 | 38 | eqeq1d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → ( ( abs ‘ 𝑦 ) = 1 ↔ 𝑦 = 1 ) ) |
| 40 | 32 39 | bitrd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → ( 𝑦 ∈ ( Unit ‘ ℤring ) ↔ 𝑦 = 1 ) ) |
| 41 | zringunit | ⊢ ( ( 𝐴 / 𝑦 ) ∈ ( Unit ‘ ℤring ) ↔ ( ( 𝐴 / 𝑦 ) ∈ ℤ ∧ ( abs ‘ ( 𝐴 / 𝑦 ) ) = 1 ) ) | |
| 42 | 41 | baib | ⊢ ( ( 𝐴 / 𝑦 ) ∈ ℤ → ( ( 𝐴 / 𝑦 ) ∈ ( Unit ‘ ℤring ) ↔ ( abs ‘ ( 𝐴 / 𝑦 ) ) = 1 ) ) |
| 43 | 18 42 | syl | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → ( ( 𝐴 / 𝑦 ) ∈ ( Unit ‘ ℤring ) ↔ ( abs ‘ ( 𝐴 / 𝑦 ) ) = 1 ) ) |
| 44 | nnre | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ ) | |
| 45 | 44 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → 𝐴 ∈ ℝ ) |
| 46 | simprl | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → 𝑦 ∈ ℕ ) | |
| 47 | 45 46 | nndivred | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → ( 𝐴 / 𝑦 ) ∈ ℝ ) |
| 48 | nnnn0 | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℕ0 ) | |
| 49 | nn0ge0 | ⊢ ( 𝐴 ∈ ℕ0 → 0 ≤ 𝐴 ) | |
| 50 | 48 49 | syl | ⊢ ( 𝐴 ∈ ℕ → 0 ≤ 𝐴 ) |
| 51 | 50 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → 0 ≤ 𝐴 ) |
| 52 | 46 | nnred | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → 𝑦 ∈ ℝ ) |
| 53 | nngt0 | ⊢ ( 𝑦 ∈ ℕ → 0 < 𝑦 ) | |
| 54 | 53 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → 0 < 𝑦 ) |
| 55 | divge0 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝑦 ∈ ℝ ∧ 0 < 𝑦 ) ) → 0 ≤ ( 𝐴 / 𝑦 ) ) | |
| 56 | 45 51 52 54 55 | syl22anc | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → 0 ≤ ( 𝐴 / 𝑦 ) ) |
| 57 | 47 56 | absidd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → ( abs ‘ ( 𝐴 / 𝑦 ) ) = ( 𝐴 / 𝑦 ) ) |
| 58 | 57 | eqeq1d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → ( ( abs ‘ ( 𝐴 / 𝑦 ) ) = 1 ↔ ( 𝐴 / 𝑦 ) = 1 ) ) |
| 59 | 1cnd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → 1 ∈ ℂ ) | |
| 60 | 19 21 59 13 | divmuld | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → ( ( 𝐴 / 𝑦 ) = 1 ↔ ( 𝑦 · 1 ) = 𝐴 ) ) |
| 61 | 21 | mulridd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → ( 𝑦 · 1 ) = 𝑦 ) |
| 62 | 61 | eqeq1d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → ( ( 𝑦 · 1 ) = 𝐴 ↔ 𝑦 = 𝐴 ) ) |
| 63 | 58 60 62 | 3bitrd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → ( ( abs ‘ ( 𝐴 / 𝑦 ) ) = 1 ↔ 𝑦 = 𝐴 ) ) |
| 64 | 43 63 | bitrd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → ( ( 𝐴 / 𝑦 ) ∈ ( Unit ‘ ℤring ) ↔ 𝑦 = 𝐴 ) ) |
| 65 | 40 64 | orbi12d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → ( ( 𝑦 ∈ ( Unit ‘ ℤring ) ∨ ( 𝐴 / 𝑦 ) ∈ ( Unit ‘ ℤring ) ) ↔ ( 𝑦 = 1 ∨ 𝑦 = 𝐴 ) ) ) |
| 66 | 29 65 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐴 ) ) → ( 𝑦 = 1 ∨ 𝑦 = 𝐴 ) ) |
| 67 | 66 | expr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) ∧ 𝑦 ∈ ℕ ) → ( 𝑦 ∥ 𝐴 → ( 𝑦 = 1 ∨ 𝑦 = 𝐴 ) ) ) |
| 68 | 67 | ralrimiva | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) → ∀ 𝑦 ∈ ℕ ( 𝑦 ∥ 𝐴 → ( 𝑦 = 1 ∨ 𝑦 = 𝐴 ) ) ) |
| 69 | isprm2 | ⊢ ( 𝐴 ∈ ℙ ↔ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑦 ∈ ℕ ( 𝑦 ∥ 𝐴 → ( 𝑦 = 1 ∨ 𝑦 = 𝐴 ) ) ) ) | |
| 70 | 8 68 69 | sylanbrc | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ 𝐼 ) → 𝐴 ∈ ℙ ) |
| 71 | prmz | ⊢ ( 𝐴 ∈ ℙ → 𝐴 ∈ ℤ ) | |
| 72 | 1nprm | ⊢ ¬ 1 ∈ ℙ | |
| 73 | zringunit | ⊢ ( 𝐴 ∈ ( Unit ‘ ℤring ) ↔ ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) ) | |
| 74 | prmnn | ⊢ ( 𝐴 ∈ ℙ → 𝐴 ∈ ℕ ) | |
| 75 | nn0re | ⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) | |
| 76 | 75 49 | absidd | ⊢ ( 𝐴 ∈ ℕ0 → ( abs ‘ 𝐴 ) = 𝐴 ) |
| 77 | 74 48 76 | 3syl | ⊢ ( 𝐴 ∈ ℙ → ( abs ‘ 𝐴 ) = 𝐴 ) |
| 78 | id | ⊢ ( 𝐴 ∈ ℙ → 𝐴 ∈ ℙ ) | |
| 79 | 77 78 | eqeltrd | ⊢ ( 𝐴 ∈ ℙ → ( abs ‘ 𝐴 ) ∈ ℙ ) |
| 80 | eleq1 | ⊢ ( ( abs ‘ 𝐴 ) = 1 → ( ( abs ‘ 𝐴 ) ∈ ℙ ↔ 1 ∈ ℙ ) ) | |
| 81 | 79 80 | syl5ibcom | ⊢ ( 𝐴 ∈ ℙ → ( ( abs ‘ 𝐴 ) = 1 → 1 ∈ ℙ ) ) |
| 82 | 81 | adantld | ⊢ ( 𝐴 ∈ ℙ → ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) → 1 ∈ ℙ ) ) |
| 83 | 73 82 | biimtrid | ⊢ ( 𝐴 ∈ ℙ → ( 𝐴 ∈ ( Unit ‘ ℤring ) → 1 ∈ ℙ ) ) |
| 84 | 72 83 | mtoi | ⊢ ( 𝐴 ∈ ℙ → ¬ 𝐴 ∈ ( Unit ‘ ℤring ) ) |
| 85 | dvdsmul1 | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → 𝑥 ∥ ( 𝑥 · 𝑦 ) ) | |
| 86 | 85 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → 𝑥 ∥ ( 𝑥 · 𝑦 ) ) |
| 87 | simpr | ⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( 𝑥 · 𝑦 ) = 𝐴 ) | |
| 88 | 86 87 | breqtrd | ⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → 𝑥 ∥ 𝐴 ) |
| 89 | simplrl | ⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → 𝑥 ∈ ℤ ) | |
| 90 | 71 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → 𝐴 ∈ ℤ ) |
| 91 | absdvdsb | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 𝑥 ∥ 𝐴 ↔ ( abs ‘ 𝑥 ) ∥ 𝐴 ) ) | |
| 92 | 89 90 91 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( 𝑥 ∥ 𝐴 ↔ ( abs ‘ 𝑥 ) ∥ 𝐴 ) ) |
| 93 | 88 92 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( abs ‘ 𝑥 ) ∥ 𝐴 ) |
| 94 | breq1 | ⊢ ( 𝑦 = ( abs ‘ 𝑥 ) → ( 𝑦 ∥ 𝐴 ↔ ( abs ‘ 𝑥 ) ∥ 𝐴 ) ) | |
| 95 | eqeq1 | ⊢ ( 𝑦 = ( abs ‘ 𝑥 ) → ( 𝑦 = 1 ↔ ( abs ‘ 𝑥 ) = 1 ) ) | |
| 96 | eqeq1 | ⊢ ( 𝑦 = ( abs ‘ 𝑥 ) → ( 𝑦 = 𝐴 ↔ ( abs ‘ 𝑥 ) = 𝐴 ) ) | |
| 97 | 95 96 | orbi12d | ⊢ ( 𝑦 = ( abs ‘ 𝑥 ) → ( ( 𝑦 = 1 ∨ 𝑦 = 𝐴 ) ↔ ( ( abs ‘ 𝑥 ) = 1 ∨ ( abs ‘ 𝑥 ) = 𝐴 ) ) ) |
| 98 | 94 97 | imbi12d | ⊢ ( 𝑦 = ( abs ‘ 𝑥 ) → ( ( 𝑦 ∥ 𝐴 → ( 𝑦 = 1 ∨ 𝑦 = 𝐴 ) ) ↔ ( ( abs ‘ 𝑥 ) ∥ 𝐴 → ( ( abs ‘ 𝑥 ) = 1 ∨ ( abs ‘ 𝑥 ) = 𝐴 ) ) ) ) |
| 99 | 69 | simprbi | ⊢ ( 𝐴 ∈ ℙ → ∀ 𝑦 ∈ ℕ ( 𝑦 ∥ 𝐴 → ( 𝑦 = 1 ∨ 𝑦 = 𝐴 ) ) ) |
| 100 | 99 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ∀ 𝑦 ∈ ℕ ( 𝑦 ∥ 𝐴 → ( 𝑦 = 1 ∨ 𝑦 = 𝐴 ) ) ) |
| 101 | 89 | zcnd | ⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → 𝑥 ∈ ℂ ) |
| 102 | 74 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → 𝐴 ∈ ℕ ) |
| 103 | 102 | nnne0d | ⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → 𝐴 ≠ 0 ) |
| 104 | simplrr | ⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → 𝑦 ∈ ℤ ) | |
| 105 | 104 | zcnd | ⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → 𝑦 ∈ ℂ ) |
| 106 | 105 | mul02d | ⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( 0 · 𝑦 ) = 0 ) |
| 107 | 103 87 106 | 3netr4d | ⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( 𝑥 · 𝑦 ) ≠ ( 0 · 𝑦 ) ) |
| 108 | oveq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 · 𝑦 ) = ( 0 · 𝑦 ) ) | |
| 109 | 108 | necon3i | ⊢ ( ( 𝑥 · 𝑦 ) ≠ ( 0 · 𝑦 ) → 𝑥 ≠ 0 ) |
| 110 | 107 109 | syl | ⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → 𝑥 ≠ 0 ) |
| 111 | 101 110 | absne0d | ⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( abs ‘ 𝑥 ) ≠ 0 ) |
| 112 | 111 | neneqd | ⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ¬ ( abs ‘ 𝑥 ) = 0 ) |
| 113 | nn0abscl | ⊢ ( 𝑥 ∈ ℤ → ( abs ‘ 𝑥 ) ∈ ℕ0 ) | |
| 114 | 89 113 | syl | ⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( abs ‘ 𝑥 ) ∈ ℕ0 ) |
| 115 | elnn0 | ⊢ ( ( abs ‘ 𝑥 ) ∈ ℕ0 ↔ ( ( abs ‘ 𝑥 ) ∈ ℕ ∨ ( abs ‘ 𝑥 ) = 0 ) ) | |
| 116 | 114 115 | sylib | ⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( ( abs ‘ 𝑥 ) ∈ ℕ ∨ ( abs ‘ 𝑥 ) = 0 ) ) |
| 117 | 116 | ord | ⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( ¬ ( abs ‘ 𝑥 ) ∈ ℕ → ( abs ‘ 𝑥 ) = 0 ) ) |
| 118 | 112 117 | mt3d | ⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( abs ‘ 𝑥 ) ∈ ℕ ) |
| 119 | 98 100 118 | rspcdva | ⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( ( abs ‘ 𝑥 ) ∥ 𝐴 → ( ( abs ‘ 𝑥 ) = 1 ∨ ( abs ‘ 𝑥 ) = 𝐴 ) ) ) |
| 120 | 93 119 | mpd | ⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( ( abs ‘ 𝑥 ) = 1 ∨ ( abs ‘ 𝑥 ) = 𝐴 ) ) |
| 121 | zringunit | ⊢ ( 𝑥 ∈ ( Unit ‘ ℤring ) ↔ ( 𝑥 ∈ ℤ ∧ ( abs ‘ 𝑥 ) = 1 ) ) | |
| 122 | 121 | baib | ⊢ ( 𝑥 ∈ ℤ → ( 𝑥 ∈ ( Unit ‘ ℤring ) ↔ ( abs ‘ 𝑥 ) = 1 ) ) |
| 123 | 89 122 | syl | ⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( 𝑥 ∈ ( Unit ‘ ℤring ) ↔ ( abs ‘ 𝑥 ) = 1 ) ) |
| 124 | 104 31 | syl | ⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( 𝑦 ∈ ( Unit ‘ ℤring ) ↔ ( abs ‘ 𝑦 ) = 1 ) ) |
| 125 | 105 | abscld | ⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( abs ‘ 𝑦 ) ∈ ℝ ) |
| 126 | 125 | recnd | ⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( abs ‘ 𝑦 ) ∈ ℂ ) |
| 127 | 1cnd | ⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → 1 ∈ ℂ ) | |
| 128 | 101 | abscld | ⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( abs ‘ 𝑥 ) ∈ ℝ ) |
| 129 | 128 | recnd | ⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( abs ‘ 𝑥 ) ∈ ℂ ) |
| 130 | 126 127 129 111 | mulcand | ⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( ( ( abs ‘ 𝑥 ) · ( abs ‘ 𝑦 ) ) = ( ( abs ‘ 𝑥 ) · 1 ) ↔ ( abs ‘ 𝑦 ) = 1 ) ) |
| 131 | 87 | fveq2d | ⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( abs ‘ ( 𝑥 · 𝑦 ) ) = ( abs ‘ 𝐴 ) ) |
| 132 | 101 105 | absmuld | ⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( abs ‘ ( 𝑥 · 𝑦 ) ) = ( ( abs ‘ 𝑥 ) · ( abs ‘ 𝑦 ) ) ) |
| 133 | 77 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( abs ‘ 𝐴 ) = 𝐴 ) |
| 134 | 131 132 133 | 3eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( ( abs ‘ 𝑥 ) · ( abs ‘ 𝑦 ) ) = 𝐴 ) |
| 135 | 129 | mulridd | ⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( ( abs ‘ 𝑥 ) · 1 ) = ( abs ‘ 𝑥 ) ) |
| 136 | 134 135 | eqeq12d | ⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( ( ( abs ‘ 𝑥 ) · ( abs ‘ 𝑦 ) ) = ( ( abs ‘ 𝑥 ) · 1 ) ↔ 𝐴 = ( abs ‘ 𝑥 ) ) ) |
| 137 | eqcom | ⊢ ( 𝐴 = ( abs ‘ 𝑥 ) ↔ ( abs ‘ 𝑥 ) = 𝐴 ) | |
| 138 | 136 137 | bitrdi | ⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( ( ( abs ‘ 𝑥 ) · ( abs ‘ 𝑦 ) ) = ( ( abs ‘ 𝑥 ) · 1 ) ↔ ( abs ‘ 𝑥 ) = 𝐴 ) ) |
| 139 | 124 130 138 | 3bitr2d | ⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( 𝑦 ∈ ( Unit ‘ ℤring ) ↔ ( abs ‘ 𝑥 ) = 𝐴 ) ) |
| 140 | 123 139 | orbi12d | ⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( ( 𝑥 ∈ ( Unit ‘ ℤring ) ∨ 𝑦 ∈ ( Unit ‘ ℤring ) ) ↔ ( ( abs ‘ 𝑥 ) = 1 ∨ ( abs ‘ 𝑥 ) = 𝐴 ) ) ) |
| 141 | 120 140 | mpbird | ⊢ ( ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑥 · 𝑦 ) = 𝐴 ) → ( 𝑥 ∈ ( Unit ‘ ℤring ) ∨ 𝑦 ∈ ( Unit ‘ ℤring ) ) ) |
| 142 | 141 | ex | ⊢ ( ( 𝐴 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑥 · 𝑦 ) = 𝐴 → ( 𝑥 ∈ ( Unit ‘ ℤring ) ∨ 𝑦 ∈ ( Unit ‘ ℤring ) ) ) ) |
| 143 | 142 | ralrimivva | ⊢ ( 𝐴 ∈ ℙ → ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℤ ( ( 𝑥 · 𝑦 ) = 𝐴 → ( 𝑥 ∈ ( Unit ‘ ℤring ) ∨ 𝑦 ∈ ( Unit ‘ ℤring ) ) ) ) |
| 144 | 25 26 1 27 | isirred2 | ⊢ ( 𝐴 ∈ 𝐼 ↔ ( 𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ( Unit ‘ ℤring ) ∧ ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℤ ( ( 𝑥 · 𝑦 ) = 𝐴 → ( 𝑥 ∈ ( Unit ‘ ℤring ) ∨ 𝑦 ∈ ( Unit ‘ ℤring ) ) ) ) ) |
| 145 | 71 84 143 144 | syl3anbrc | ⊢ ( 𝐴 ∈ ℙ → 𝐴 ∈ 𝐼 ) |
| 146 | 145 | adantl | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ ℙ ) → 𝐴 ∈ 𝐼 ) |
| 147 | 70 146 | impbida | ⊢ ( 𝐴 ∈ ℕ → ( 𝐴 ∈ 𝐼 ↔ 𝐴 ∈ ℙ ) ) |