This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The units of ZZ are the integers with norm 1 , i.e. 1 and -u 1 . (Contributed by Mario Carneiro, 5-Dec-2014) (Revised by AV, 10-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zringunit | ⊢ ( 𝐴 ∈ ( Unit ‘ ℤring ) ↔ ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zringbas | ⊢ ℤ = ( Base ‘ ℤring ) | |
| 2 | eqid | ⊢ ( Unit ‘ ℤring ) = ( Unit ‘ ℤring ) | |
| 3 | 1 2 | unitcl | ⊢ ( 𝐴 ∈ ( Unit ‘ ℤring ) → 𝐴 ∈ ℤ ) |
| 4 | zsubrg | ⊢ ℤ ∈ ( SubRing ‘ ℂfld ) | |
| 5 | zgz | ⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℤ[i] ) | |
| 6 | 5 | ssriv | ⊢ ℤ ⊆ ℤ[i] |
| 7 | gzsubrg | ⊢ ℤ[i] ∈ ( SubRing ‘ ℂfld ) | |
| 8 | eqid | ⊢ ( ℂfld ↾s ℤ[i] ) = ( ℂfld ↾s ℤ[i] ) | |
| 9 | 8 | subsubrg | ⊢ ( ℤ[i] ∈ ( SubRing ‘ ℂfld ) → ( ℤ ∈ ( SubRing ‘ ( ℂfld ↾s ℤ[i] ) ) ↔ ( ℤ ∈ ( SubRing ‘ ℂfld ) ∧ ℤ ⊆ ℤ[i] ) ) ) |
| 10 | 7 9 | ax-mp | ⊢ ( ℤ ∈ ( SubRing ‘ ( ℂfld ↾s ℤ[i] ) ) ↔ ( ℤ ∈ ( SubRing ‘ ℂfld ) ∧ ℤ ⊆ ℤ[i] ) ) |
| 11 | 4 6 10 | mpbir2an | ⊢ ℤ ∈ ( SubRing ‘ ( ℂfld ↾s ℤ[i] ) ) |
| 12 | df-zring | ⊢ ℤring = ( ℂfld ↾s ℤ ) | |
| 13 | ressabs | ⊢ ( ( ℤ[i] ∈ ( SubRing ‘ ℂfld ) ∧ ℤ ⊆ ℤ[i] ) → ( ( ℂfld ↾s ℤ[i] ) ↾s ℤ ) = ( ℂfld ↾s ℤ ) ) | |
| 14 | 7 6 13 | mp2an | ⊢ ( ( ℂfld ↾s ℤ[i] ) ↾s ℤ ) = ( ℂfld ↾s ℤ ) |
| 15 | 12 14 | eqtr4i | ⊢ ℤring = ( ( ℂfld ↾s ℤ[i] ) ↾s ℤ ) |
| 16 | eqid | ⊢ ( Unit ‘ ( ℂfld ↾s ℤ[i] ) ) = ( Unit ‘ ( ℂfld ↾s ℤ[i] ) ) | |
| 17 | 15 16 2 | subrguss | ⊢ ( ℤ ∈ ( SubRing ‘ ( ℂfld ↾s ℤ[i] ) ) → ( Unit ‘ ℤring ) ⊆ ( Unit ‘ ( ℂfld ↾s ℤ[i] ) ) ) |
| 18 | 11 17 | ax-mp | ⊢ ( Unit ‘ ℤring ) ⊆ ( Unit ‘ ( ℂfld ↾s ℤ[i] ) ) |
| 19 | 18 | sseli | ⊢ ( 𝐴 ∈ ( Unit ‘ ℤring ) → 𝐴 ∈ ( Unit ‘ ( ℂfld ↾s ℤ[i] ) ) ) |
| 20 | 8 | gzrngunit | ⊢ ( 𝐴 ∈ ( Unit ‘ ( ℂfld ↾s ℤ[i] ) ) ↔ ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) ) |
| 21 | 20 | simprbi | ⊢ ( 𝐴 ∈ ( Unit ‘ ( ℂfld ↾s ℤ[i] ) ) → ( abs ‘ 𝐴 ) = 1 ) |
| 22 | 19 21 | syl | ⊢ ( 𝐴 ∈ ( Unit ‘ ℤring ) → ( abs ‘ 𝐴 ) = 1 ) |
| 23 | 3 22 | jca | ⊢ ( 𝐴 ∈ ( Unit ‘ ℤring ) → ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) ) |
| 24 | zcn | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) | |
| 25 | 24 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) → 𝐴 ∈ ℂ ) |
| 26 | simpr | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( abs ‘ 𝐴 ) = 1 ) | |
| 27 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 28 | 27 | a1i | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) → 1 ≠ 0 ) |
| 29 | 26 28 | eqnetrd | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( abs ‘ 𝐴 ) ≠ 0 ) |
| 30 | fveq2 | ⊢ ( 𝐴 = 0 → ( abs ‘ 𝐴 ) = ( abs ‘ 0 ) ) | |
| 31 | abs0 | ⊢ ( abs ‘ 0 ) = 0 | |
| 32 | 30 31 | eqtrdi | ⊢ ( 𝐴 = 0 → ( abs ‘ 𝐴 ) = 0 ) |
| 33 | 32 | necon3i | ⊢ ( ( abs ‘ 𝐴 ) ≠ 0 → 𝐴 ≠ 0 ) |
| 34 | 29 33 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) → 𝐴 ≠ 0 ) |
| 35 | eldifsn | ⊢ ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) | |
| 36 | 25 34 35 | sylanbrc | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) → 𝐴 ∈ ( ℂ ∖ { 0 } ) ) |
| 37 | simpl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) → 𝐴 ∈ ℤ ) | |
| 38 | cnfldinv | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( invr ‘ ℂfld ) ‘ 𝐴 ) = ( 1 / 𝐴 ) ) | |
| 39 | 25 34 38 | syl2anc | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ( invr ‘ ℂfld ) ‘ 𝐴 ) = ( 1 / 𝐴 ) ) |
| 40 | zre | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) | |
| 41 | 40 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) → 𝐴 ∈ ℝ ) |
| 42 | absresq | ⊢ ( 𝐴 ∈ ℝ → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 ↑ 2 ) ) | |
| 43 | 41 42 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 ↑ 2 ) ) |
| 44 | 26 | oveq1d | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 1 ↑ 2 ) ) |
| 45 | sq1 | ⊢ ( 1 ↑ 2 ) = 1 | |
| 46 | 44 45 | eqtrdi | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) = 1 ) |
| 47 | 25 | sqvald | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) ) |
| 48 | 43 46 47 | 3eqtr3rd | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( 𝐴 · 𝐴 ) = 1 ) |
| 49 | 1cnd | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) → 1 ∈ ℂ ) | |
| 50 | 49 25 25 34 | divmuld | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ( 1 / 𝐴 ) = 𝐴 ↔ ( 𝐴 · 𝐴 ) = 1 ) ) |
| 51 | 48 50 | mpbird | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( 1 / 𝐴 ) = 𝐴 ) |
| 52 | 39 51 | eqtrd | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ( invr ‘ ℂfld ) ‘ 𝐴 ) = 𝐴 ) |
| 53 | 52 37 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ( invr ‘ ℂfld ) ‘ 𝐴 ) ∈ ℤ ) |
| 54 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 55 | cnfld0 | ⊢ 0 = ( 0g ‘ ℂfld ) | |
| 56 | cndrng | ⊢ ℂfld ∈ DivRing | |
| 57 | 54 55 56 | drngui | ⊢ ( ℂ ∖ { 0 } ) = ( Unit ‘ ℂfld ) |
| 58 | eqid | ⊢ ( invr ‘ ℂfld ) = ( invr ‘ ℂfld ) | |
| 59 | 12 57 2 58 | subrgunit | ⊢ ( ℤ ∈ ( SubRing ‘ ℂfld ) → ( 𝐴 ∈ ( Unit ‘ ℤring ) ↔ ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐴 ∈ ℤ ∧ ( ( invr ‘ ℂfld ) ‘ 𝐴 ) ∈ ℤ ) ) ) |
| 60 | 4 59 | ax-mp | ⊢ ( 𝐴 ∈ ( Unit ‘ ℤring ) ↔ ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐴 ∈ ℤ ∧ ( ( invr ‘ ℂfld ) ‘ 𝐴 ) ∈ ℤ ) ) |
| 61 | 36 37 53 60 | syl3anbrc | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) → 𝐴 ∈ ( Unit ‘ ℤring ) ) |
| 62 | 23 61 | impbii | ⊢ ( 𝐴 ∈ ( Unit ‘ ℤring ) ↔ ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) ) |