This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Expand out the class difference from isirred . (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isirred2.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| isirred2.2 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | ||
| isirred2.3 | ⊢ 𝐼 = ( Irred ‘ 𝑅 ) | ||
| isirred2.4 | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | isirred2 | ⊢ ( 𝑋 ∈ 𝐼 ↔ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝑈 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 𝑋 → ( 𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isirred2.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | isirred2.2 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 3 | isirred2.3 | ⊢ 𝐼 = ( Irred ‘ 𝑅 ) | |
| 4 | isirred2.4 | ⊢ · = ( .r ‘ 𝑅 ) | |
| 5 | eldif | ⊢ ( 𝑋 ∈ ( 𝐵 ∖ 𝑈 ) ↔ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝑈 ) ) | |
| 6 | eldif | ⊢ ( 𝑥 ∈ ( 𝐵 ∖ 𝑈 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝑈 ) ) | |
| 7 | eldif | ⊢ ( 𝑦 ∈ ( 𝐵 ∖ 𝑈 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝑈 ) ) | |
| 8 | 6 7 | anbi12i | ⊢ ( ( 𝑥 ∈ ( 𝐵 ∖ 𝑈 ) ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑈 ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝑈 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝑈 ) ) ) |
| 9 | an4 | ⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝑈 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝑈 ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ¬ 𝑥 ∈ 𝑈 ∧ ¬ 𝑦 ∈ 𝑈 ) ) ) | |
| 10 | 8 9 | bitri | ⊢ ( ( 𝑥 ∈ ( 𝐵 ∖ 𝑈 ) ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑈 ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ¬ 𝑥 ∈ 𝑈 ∧ ¬ 𝑦 ∈ 𝑈 ) ) ) |
| 11 | 10 | imbi1i | ⊢ ( ( ( 𝑥 ∈ ( 𝐵 ∖ 𝑈 ) ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑈 ) ) → ( 𝑥 · 𝑦 ) ≠ 𝑋 ) ↔ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ¬ 𝑥 ∈ 𝑈 ∧ ¬ 𝑦 ∈ 𝑈 ) ) → ( 𝑥 · 𝑦 ) ≠ 𝑋 ) ) |
| 12 | impexp | ⊢ ( ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ¬ 𝑥 ∈ 𝑈 ∧ ¬ 𝑦 ∈ 𝑈 ) ) → ( 𝑥 · 𝑦 ) ≠ 𝑋 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( ¬ 𝑥 ∈ 𝑈 ∧ ¬ 𝑦 ∈ 𝑈 ) → ( 𝑥 · 𝑦 ) ≠ 𝑋 ) ) ) | |
| 13 | pm4.56 | ⊢ ( ( ¬ 𝑥 ∈ 𝑈 ∧ ¬ 𝑦 ∈ 𝑈 ) ↔ ¬ ( 𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈 ) ) | |
| 14 | df-ne | ⊢ ( ( 𝑥 · 𝑦 ) ≠ 𝑋 ↔ ¬ ( 𝑥 · 𝑦 ) = 𝑋 ) | |
| 15 | 13 14 | imbi12i | ⊢ ( ( ( ¬ 𝑥 ∈ 𝑈 ∧ ¬ 𝑦 ∈ 𝑈 ) → ( 𝑥 · 𝑦 ) ≠ 𝑋 ) ↔ ( ¬ ( 𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈 ) → ¬ ( 𝑥 · 𝑦 ) = 𝑋 ) ) |
| 16 | con34b | ⊢ ( ( ( 𝑥 · 𝑦 ) = 𝑋 → ( 𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈 ) ) ↔ ( ¬ ( 𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈 ) → ¬ ( 𝑥 · 𝑦 ) = 𝑋 ) ) | |
| 17 | 15 16 | bitr4i | ⊢ ( ( ( ¬ 𝑥 ∈ 𝑈 ∧ ¬ 𝑦 ∈ 𝑈 ) → ( 𝑥 · 𝑦 ) ≠ 𝑋 ) ↔ ( ( 𝑥 · 𝑦 ) = 𝑋 → ( 𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈 ) ) ) |
| 18 | 17 | imbi2i | ⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( ¬ 𝑥 ∈ 𝑈 ∧ ¬ 𝑦 ∈ 𝑈 ) → ( 𝑥 · 𝑦 ) ≠ 𝑋 ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 · 𝑦 ) = 𝑋 → ( 𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈 ) ) ) ) |
| 19 | 12 18 | bitri | ⊢ ( ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ¬ 𝑥 ∈ 𝑈 ∧ ¬ 𝑦 ∈ 𝑈 ) ) → ( 𝑥 · 𝑦 ) ≠ 𝑋 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 · 𝑦 ) = 𝑋 → ( 𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈 ) ) ) ) |
| 20 | 11 19 | bitri | ⊢ ( ( ( 𝑥 ∈ ( 𝐵 ∖ 𝑈 ) ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑈 ) ) → ( 𝑥 · 𝑦 ) ≠ 𝑋 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 · 𝑦 ) = 𝑋 → ( 𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈 ) ) ) ) |
| 21 | 20 | 2albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ ( 𝐵 ∖ 𝑈 ) ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑈 ) ) → ( 𝑥 · 𝑦 ) ≠ 𝑋 ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 · 𝑦 ) = 𝑋 → ( 𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈 ) ) ) ) |
| 22 | r2al | ⊢ ( ∀ 𝑥 ∈ ( 𝐵 ∖ 𝑈 ) ∀ 𝑦 ∈ ( 𝐵 ∖ 𝑈 ) ( 𝑥 · 𝑦 ) ≠ 𝑋 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ ( 𝐵 ∖ 𝑈 ) ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑈 ) ) → ( 𝑥 · 𝑦 ) ≠ 𝑋 ) ) | |
| 23 | r2al | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 𝑋 → ( 𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈 ) ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 · 𝑦 ) = 𝑋 → ( 𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈 ) ) ) ) | |
| 24 | 21 22 23 | 3bitr4i | ⊢ ( ∀ 𝑥 ∈ ( 𝐵 ∖ 𝑈 ) ∀ 𝑦 ∈ ( 𝐵 ∖ 𝑈 ) ( 𝑥 · 𝑦 ) ≠ 𝑋 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 𝑋 → ( 𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈 ) ) ) |
| 25 | 5 24 | anbi12i | ⊢ ( ( 𝑋 ∈ ( 𝐵 ∖ 𝑈 ) ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ 𝑈 ) ∀ 𝑦 ∈ ( 𝐵 ∖ 𝑈 ) ( 𝑥 · 𝑦 ) ≠ 𝑋 ) ↔ ( ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝑈 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 𝑋 → ( 𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈 ) ) ) ) |
| 26 | eqid | ⊢ ( 𝐵 ∖ 𝑈 ) = ( 𝐵 ∖ 𝑈 ) | |
| 27 | 1 2 3 26 4 | isirred | ⊢ ( 𝑋 ∈ 𝐼 ↔ ( 𝑋 ∈ ( 𝐵 ∖ 𝑈 ) ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ 𝑈 ) ∀ 𝑦 ∈ ( 𝐵 ∖ 𝑈 ) ( 𝑥 · 𝑦 ) ≠ 𝑋 ) ) |
| 28 | df-3an | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝑈 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 𝑋 → ( 𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈 ) ) ) ↔ ( ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝑈 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 𝑋 → ( 𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈 ) ) ) ) | |
| 29 | 25 27 28 | 3bitr4i | ⊢ ( 𝑋 ∈ 𝐼 ↔ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝑈 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 𝑋 → ( 𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈 ) ) ) ) |