This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If product of two elements is irreducible, then one of the elements must be a unit. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | irredn0.i | ⊢ 𝐼 = ( Irred ‘ 𝑅 ) | |
| irredmul.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| irredmul.u | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | ||
| irredmul.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | irredmul | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 · 𝑌 ) ∈ 𝐼 ) → ( 𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | irredn0.i | ⊢ 𝐼 = ( Irred ‘ 𝑅 ) | |
| 2 | irredmul.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | irredmul.u | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 4 | irredmul.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 5 | 2 3 1 4 | isirred2 | ⊢ ( ( 𝑋 · 𝑌 ) ∈ 𝐼 ↔ ( ( 𝑋 · 𝑌 ) ∈ 𝐵 ∧ ¬ ( 𝑋 · 𝑌 ) ∈ 𝑈 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑌 ) → ( 𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈 ) ) ) ) |
| 6 | 5 | simp3bi | ⊢ ( ( 𝑋 · 𝑌 ) ∈ 𝐼 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑌 ) → ( 𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈 ) ) ) |
| 7 | eqid | ⊢ ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑌 ) | |
| 8 | oveq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑦 ) ) | |
| 9 | 8 | eqeq1d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑌 ) ↔ ( 𝑋 · 𝑦 ) = ( 𝑋 · 𝑌 ) ) ) |
| 10 | eleq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∈ 𝑈 ↔ 𝑋 ∈ 𝑈 ) ) | |
| 11 | 10 | orbi1d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈 ) ↔ ( 𝑋 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈 ) ) ) |
| 12 | 9 11 | imbi12d | ⊢ ( 𝑥 = 𝑋 → ( ( ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑌 ) → ( 𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈 ) ) ↔ ( ( 𝑋 · 𝑦 ) = ( 𝑋 · 𝑌 ) → ( 𝑋 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈 ) ) ) ) |
| 13 | oveq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝑋 · 𝑦 ) = ( 𝑋 · 𝑌 ) ) | |
| 14 | 13 | eqeq1d | ⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 · 𝑦 ) = ( 𝑋 · 𝑌 ) ↔ ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑌 ) ) ) |
| 15 | eleq1 | ⊢ ( 𝑦 = 𝑌 → ( 𝑦 ∈ 𝑈 ↔ 𝑌 ∈ 𝑈 ) ) | |
| 16 | 15 | orbi2d | ⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈 ) ↔ ( 𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈 ) ) ) |
| 17 | 14 16 | imbi12d | ⊢ ( 𝑦 = 𝑌 → ( ( ( 𝑋 · 𝑦 ) = ( 𝑋 · 𝑌 ) → ( 𝑋 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈 ) ) ↔ ( ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑌 ) → ( 𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈 ) ) ) ) |
| 18 | 12 17 | rspc2v | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑌 ) → ( 𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈 ) ) → ( ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑌 ) → ( 𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈 ) ) ) ) |
| 19 | 7 18 | mpii | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑌 ) → ( 𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈 ) ) → ( 𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈 ) ) ) |
| 20 | 6 19 | syl5 | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 · 𝑌 ) ∈ 𝐼 → ( 𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈 ) ) ) |
| 21 | 20 | 3impia | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 · 𝑌 ) ∈ 𝐼 ) → ( 𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈 ) ) |