This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for multiplication. Theorem I.7 of Apostol p. 18. (Contributed by NM, 26-Jan-1995) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulcand.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| mulcand.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| mulcand.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| mulcand.4 | ⊢ ( 𝜑 → 𝐶 ≠ 0 ) | ||
| Assertion | mulcand | ⊢ ( 𝜑 → ( ( 𝐶 · 𝐴 ) = ( 𝐶 · 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcand.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | mulcand.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | mulcand.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 4 | mulcand.4 | ⊢ ( 𝜑 → 𝐶 ≠ 0 ) | |
| 5 | recex | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → ∃ 𝑥 ∈ ℂ ( 𝐶 · 𝑥 ) = 1 ) | |
| 6 | 3 4 5 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℂ ( 𝐶 · 𝑥 ) = 1 ) |
| 7 | oveq2 | ⊢ ( ( 𝐶 · 𝐴 ) = ( 𝐶 · 𝐵 ) → ( 𝑥 · ( 𝐶 · 𝐴 ) ) = ( 𝑥 · ( 𝐶 · 𝐵 ) ) ) | |
| 8 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 · 𝑥 ) = 1 ) ) → 𝑥 ∈ ℂ ) | |
| 9 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 · 𝑥 ) = 1 ) ) → 𝐶 ∈ ℂ ) |
| 10 | 8 9 | mulcomd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 · 𝑥 ) = 1 ) ) → ( 𝑥 · 𝐶 ) = ( 𝐶 · 𝑥 ) ) |
| 11 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 · 𝑥 ) = 1 ) ) → ( 𝐶 · 𝑥 ) = 1 ) | |
| 12 | 10 11 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 · 𝑥 ) = 1 ) ) → ( 𝑥 · 𝐶 ) = 1 ) |
| 13 | 12 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 · 𝑥 ) = 1 ) ) → ( ( 𝑥 · 𝐶 ) · 𝐴 ) = ( 1 · 𝐴 ) ) |
| 14 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 · 𝑥 ) = 1 ) ) → 𝐴 ∈ ℂ ) |
| 15 | 8 9 14 | mulassd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 · 𝑥 ) = 1 ) ) → ( ( 𝑥 · 𝐶 ) · 𝐴 ) = ( 𝑥 · ( 𝐶 · 𝐴 ) ) ) |
| 16 | 14 | mullidd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 · 𝑥 ) = 1 ) ) → ( 1 · 𝐴 ) = 𝐴 ) |
| 17 | 13 15 16 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 · 𝑥 ) = 1 ) ) → ( 𝑥 · ( 𝐶 · 𝐴 ) ) = 𝐴 ) |
| 18 | 12 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 · 𝑥 ) = 1 ) ) → ( ( 𝑥 · 𝐶 ) · 𝐵 ) = ( 1 · 𝐵 ) ) |
| 19 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 · 𝑥 ) = 1 ) ) → 𝐵 ∈ ℂ ) |
| 20 | 8 9 19 | mulassd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 · 𝑥 ) = 1 ) ) → ( ( 𝑥 · 𝐶 ) · 𝐵 ) = ( 𝑥 · ( 𝐶 · 𝐵 ) ) ) |
| 21 | 19 | mullidd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 · 𝑥 ) = 1 ) ) → ( 1 · 𝐵 ) = 𝐵 ) |
| 22 | 18 20 21 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 · 𝑥 ) = 1 ) ) → ( 𝑥 · ( 𝐶 · 𝐵 ) ) = 𝐵 ) |
| 23 | 17 22 | eqeq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 · 𝑥 ) = 1 ) ) → ( ( 𝑥 · ( 𝐶 · 𝐴 ) ) = ( 𝑥 · ( 𝐶 · 𝐵 ) ) ↔ 𝐴 = 𝐵 ) ) |
| 24 | 7 23 | imbitrid | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ ( 𝐶 · 𝑥 ) = 1 ) ) → ( ( 𝐶 · 𝐴 ) = ( 𝐶 · 𝐵 ) → 𝐴 = 𝐵 ) ) |
| 25 | 6 24 | rexlimddv | ⊢ ( 𝜑 → ( ( 𝐶 · 𝐴 ) = ( 𝐶 · 𝐵 ) → 𝐴 = 𝐵 ) ) |
| 26 | oveq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝐶 · 𝐴 ) = ( 𝐶 · 𝐵 ) ) | |
| 27 | 25 26 | impbid1 | ⊢ ( 𝜑 → ( ( 𝐶 · 𝐴 ) = ( 𝐶 · 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |