This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive integer is irreducible over ZZ iff it is a prime number. (Contributed by Mario Carneiro, 5-Dec-2014) (Revised by AV, 10-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | prmirred.i | |- I = ( Irred ` ZZring ) |
|
| Assertion | prmirredlem | |- ( A e. NN -> ( A e. I <-> A e. Prime ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmirred.i | |- I = ( Irred ` ZZring ) |
|
| 2 | zringring | |- ZZring e. Ring |
|
| 3 | zring1 | |- 1 = ( 1r ` ZZring ) |
|
| 4 | 1 3 | irredn1 | |- ( ( ZZring e. Ring /\ A e. I ) -> A =/= 1 ) |
| 5 | 2 4 | mpan | |- ( A e. I -> A =/= 1 ) |
| 6 | 5 | anim2i | |- ( ( A e. NN /\ A e. I ) -> ( A e. NN /\ A =/= 1 ) ) |
| 7 | eluz2b3 | |- ( A e. ( ZZ>= ` 2 ) <-> ( A e. NN /\ A =/= 1 ) ) |
|
| 8 | 6 7 | sylibr | |- ( ( A e. NN /\ A e. I ) -> A e. ( ZZ>= ` 2 ) ) |
| 9 | nnz | |- ( y e. NN -> y e. ZZ ) |
|
| 10 | 9 | ad2antrl | |- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> y e. ZZ ) |
| 11 | simprr | |- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> y || A ) |
|
| 12 | nnne0 | |- ( y e. NN -> y =/= 0 ) |
|
| 13 | 12 | ad2antrl | |- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> y =/= 0 ) |
| 14 | nnz | |- ( A e. NN -> A e. ZZ ) |
|
| 15 | 14 | ad2antrr | |- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> A e. ZZ ) |
| 16 | dvdsval2 | |- ( ( y e. ZZ /\ y =/= 0 /\ A e. ZZ ) -> ( y || A <-> ( A / y ) e. ZZ ) ) |
|
| 17 | 10 13 15 16 | syl3anc | |- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> ( y || A <-> ( A / y ) e. ZZ ) ) |
| 18 | 11 17 | mpbid | |- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> ( A / y ) e. ZZ ) |
| 19 | 15 | zcnd | |- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> A e. CC ) |
| 20 | nncn | |- ( y e. NN -> y e. CC ) |
|
| 21 | 20 | ad2antrl | |- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> y e. CC ) |
| 22 | 19 21 13 | divcan2d | |- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> ( y x. ( A / y ) ) = A ) |
| 23 | simplr | |- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> A e. I ) |
|
| 24 | 22 23 | eqeltrd | |- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> ( y x. ( A / y ) ) e. I ) |
| 25 | zringbas | |- ZZ = ( Base ` ZZring ) |
|
| 26 | eqid | |- ( Unit ` ZZring ) = ( Unit ` ZZring ) |
|
| 27 | zringmulr | |- x. = ( .r ` ZZring ) |
|
| 28 | 1 25 26 27 | irredmul | |- ( ( y e. ZZ /\ ( A / y ) e. ZZ /\ ( y x. ( A / y ) ) e. I ) -> ( y e. ( Unit ` ZZring ) \/ ( A / y ) e. ( Unit ` ZZring ) ) ) |
| 29 | 10 18 24 28 | syl3anc | |- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> ( y e. ( Unit ` ZZring ) \/ ( A / y ) e. ( Unit ` ZZring ) ) ) |
| 30 | zringunit | |- ( y e. ( Unit ` ZZring ) <-> ( y e. ZZ /\ ( abs ` y ) = 1 ) ) |
|
| 31 | 30 | baib | |- ( y e. ZZ -> ( y e. ( Unit ` ZZring ) <-> ( abs ` y ) = 1 ) ) |
| 32 | 10 31 | syl | |- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> ( y e. ( Unit ` ZZring ) <-> ( abs ` y ) = 1 ) ) |
| 33 | nnnn0 | |- ( y e. NN -> y e. NN0 ) |
|
| 34 | nn0re | |- ( y e. NN0 -> y e. RR ) |
|
| 35 | nn0ge0 | |- ( y e. NN0 -> 0 <_ y ) |
|
| 36 | 34 35 | absidd | |- ( y e. NN0 -> ( abs ` y ) = y ) |
| 37 | 33 36 | syl | |- ( y e. NN -> ( abs ` y ) = y ) |
| 38 | 37 | ad2antrl | |- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> ( abs ` y ) = y ) |
| 39 | 38 | eqeq1d | |- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> ( ( abs ` y ) = 1 <-> y = 1 ) ) |
| 40 | 32 39 | bitrd | |- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> ( y e. ( Unit ` ZZring ) <-> y = 1 ) ) |
| 41 | zringunit | |- ( ( A / y ) e. ( Unit ` ZZring ) <-> ( ( A / y ) e. ZZ /\ ( abs ` ( A / y ) ) = 1 ) ) |
|
| 42 | 41 | baib | |- ( ( A / y ) e. ZZ -> ( ( A / y ) e. ( Unit ` ZZring ) <-> ( abs ` ( A / y ) ) = 1 ) ) |
| 43 | 18 42 | syl | |- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> ( ( A / y ) e. ( Unit ` ZZring ) <-> ( abs ` ( A / y ) ) = 1 ) ) |
| 44 | nnre | |- ( A e. NN -> A e. RR ) |
|
| 45 | 44 | ad2antrr | |- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> A e. RR ) |
| 46 | simprl | |- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> y e. NN ) |
|
| 47 | 45 46 | nndivred | |- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> ( A / y ) e. RR ) |
| 48 | nnnn0 | |- ( A e. NN -> A e. NN0 ) |
|
| 49 | nn0ge0 | |- ( A e. NN0 -> 0 <_ A ) |
|
| 50 | 48 49 | syl | |- ( A e. NN -> 0 <_ A ) |
| 51 | 50 | ad2antrr | |- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> 0 <_ A ) |
| 52 | 46 | nnred | |- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> y e. RR ) |
| 53 | nngt0 | |- ( y e. NN -> 0 < y ) |
|
| 54 | 53 | ad2antrl | |- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> 0 < y ) |
| 55 | divge0 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( y e. RR /\ 0 < y ) ) -> 0 <_ ( A / y ) ) |
|
| 56 | 45 51 52 54 55 | syl22anc | |- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> 0 <_ ( A / y ) ) |
| 57 | 47 56 | absidd | |- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> ( abs ` ( A / y ) ) = ( A / y ) ) |
| 58 | 57 | eqeq1d | |- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> ( ( abs ` ( A / y ) ) = 1 <-> ( A / y ) = 1 ) ) |
| 59 | 1cnd | |- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> 1 e. CC ) |
|
| 60 | 19 21 59 13 | divmuld | |- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> ( ( A / y ) = 1 <-> ( y x. 1 ) = A ) ) |
| 61 | 21 | mulridd | |- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> ( y x. 1 ) = y ) |
| 62 | 61 | eqeq1d | |- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> ( ( y x. 1 ) = A <-> y = A ) ) |
| 63 | 58 60 62 | 3bitrd | |- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> ( ( abs ` ( A / y ) ) = 1 <-> y = A ) ) |
| 64 | 43 63 | bitrd | |- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> ( ( A / y ) e. ( Unit ` ZZring ) <-> y = A ) ) |
| 65 | 40 64 | orbi12d | |- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> ( ( y e. ( Unit ` ZZring ) \/ ( A / y ) e. ( Unit ` ZZring ) ) <-> ( y = 1 \/ y = A ) ) ) |
| 66 | 29 65 | mpbid | |- ( ( ( A e. NN /\ A e. I ) /\ ( y e. NN /\ y || A ) ) -> ( y = 1 \/ y = A ) ) |
| 67 | 66 | expr | |- ( ( ( A e. NN /\ A e. I ) /\ y e. NN ) -> ( y || A -> ( y = 1 \/ y = A ) ) ) |
| 68 | 67 | ralrimiva | |- ( ( A e. NN /\ A e. I ) -> A. y e. NN ( y || A -> ( y = 1 \/ y = A ) ) ) |
| 69 | isprm2 | |- ( A e. Prime <-> ( A e. ( ZZ>= ` 2 ) /\ A. y e. NN ( y || A -> ( y = 1 \/ y = A ) ) ) ) |
|
| 70 | 8 68 69 | sylanbrc | |- ( ( A e. NN /\ A e. I ) -> A e. Prime ) |
| 71 | prmz | |- ( A e. Prime -> A e. ZZ ) |
|
| 72 | 1nprm | |- -. 1 e. Prime |
|
| 73 | zringunit | |- ( A e. ( Unit ` ZZring ) <-> ( A e. ZZ /\ ( abs ` A ) = 1 ) ) |
|
| 74 | prmnn | |- ( A e. Prime -> A e. NN ) |
|
| 75 | nn0re | |- ( A e. NN0 -> A e. RR ) |
|
| 76 | 75 49 | absidd | |- ( A e. NN0 -> ( abs ` A ) = A ) |
| 77 | 74 48 76 | 3syl | |- ( A e. Prime -> ( abs ` A ) = A ) |
| 78 | id | |- ( A e. Prime -> A e. Prime ) |
|
| 79 | 77 78 | eqeltrd | |- ( A e. Prime -> ( abs ` A ) e. Prime ) |
| 80 | eleq1 | |- ( ( abs ` A ) = 1 -> ( ( abs ` A ) e. Prime <-> 1 e. Prime ) ) |
|
| 81 | 79 80 | syl5ibcom | |- ( A e. Prime -> ( ( abs ` A ) = 1 -> 1 e. Prime ) ) |
| 82 | 81 | adantld | |- ( A e. Prime -> ( ( A e. ZZ /\ ( abs ` A ) = 1 ) -> 1 e. Prime ) ) |
| 83 | 73 82 | biimtrid | |- ( A e. Prime -> ( A e. ( Unit ` ZZring ) -> 1 e. Prime ) ) |
| 84 | 72 83 | mtoi | |- ( A e. Prime -> -. A e. ( Unit ` ZZring ) ) |
| 85 | dvdsmul1 | |- ( ( x e. ZZ /\ y e. ZZ ) -> x || ( x x. y ) ) |
|
| 86 | 85 | ad2antlr | |- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> x || ( x x. y ) ) |
| 87 | simpr | |- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( x x. y ) = A ) |
|
| 88 | 86 87 | breqtrd | |- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> x || A ) |
| 89 | simplrl | |- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> x e. ZZ ) |
|
| 90 | 71 | ad2antrr | |- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> A e. ZZ ) |
| 91 | absdvdsb | |- ( ( x e. ZZ /\ A e. ZZ ) -> ( x || A <-> ( abs ` x ) || A ) ) |
|
| 92 | 89 90 91 | syl2anc | |- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( x || A <-> ( abs ` x ) || A ) ) |
| 93 | 88 92 | mpbid | |- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( abs ` x ) || A ) |
| 94 | breq1 | |- ( y = ( abs ` x ) -> ( y || A <-> ( abs ` x ) || A ) ) |
|
| 95 | eqeq1 | |- ( y = ( abs ` x ) -> ( y = 1 <-> ( abs ` x ) = 1 ) ) |
|
| 96 | eqeq1 | |- ( y = ( abs ` x ) -> ( y = A <-> ( abs ` x ) = A ) ) |
|
| 97 | 95 96 | orbi12d | |- ( y = ( abs ` x ) -> ( ( y = 1 \/ y = A ) <-> ( ( abs ` x ) = 1 \/ ( abs ` x ) = A ) ) ) |
| 98 | 94 97 | imbi12d | |- ( y = ( abs ` x ) -> ( ( y || A -> ( y = 1 \/ y = A ) ) <-> ( ( abs ` x ) || A -> ( ( abs ` x ) = 1 \/ ( abs ` x ) = A ) ) ) ) |
| 99 | 69 | simprbi | |- ( A e. Prime -> A. y e. NN ( y || A -> ( y = 1 \/ y = A ) ) ) |
| 100 | 99 | ad2antrr | |- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> A. y e. NN ( y || A -> ( y = 1 \/ y = A ) ) ) |
| 101 | 89 | zcnd | |- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> x e. CC ) |
| 102 | 74 | ad2antrr | |- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> A e. NN ) |
| 103 | 102 | nnne0d | |- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> A =/= 0 ) |
| 104 | simplrr | |- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> y e. ZZ ) |
|
| 105 | 104 | zcnd | |- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> y e. CC ) |
| 106 | 105 | mul02d | |- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( 0 x. y ) = 0 ) |
| 107 | 103 87 106 | 3netr4d | |- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( x x. y ) =/= ( 0 x. y ) ) |
| 108 | oveq1 | |- ( x = 0 -> ( x x. y ) = ( 0 x. y ) ) |
|
| 109 | 108 | necon3i | |- ( ( x x. y ) =/= ( 0 x. y ) -> x =/= 0 ) |
| 110 | 107 109 | syl | |- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> x =/= 0 ) |
| 111 | 101 110 | absne0d | |- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( abs ` x ) =/= 0 ) |
| 112 | 111 | neneqd | |- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> -. ( abs ` x ) = 0 ) |
| 113 | nn0abscl | |- ( x e. ZZ -> ( abs ` x ) e. NN0 ) |
|
| 114 | 89 113 | syl | |- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( abs ` x ) e. NN0 ) |
| 115 | elnn0 | |- ( ( abs ` x ) e. NN0 <-> ( ( abs ` x ) e. NN \/ ( abs ` x ) = 0 ) ) |
|
| 116 | 114 115 | sylib | |- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( ( abs ` x ) e. NN \/ ( abs ` x ) = 0 ) ) |
| 117 | 116 | ord | |- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( -. ( abs ` x ) e. NN -> ( abs ` x ) = 0 ) ) |
| 118 | 112 117 | mt3d | |- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( abs ` x ) e. NN ) |
| 119 | 98 100 118 | rspcdva | |- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( ( abs ` x ) || A -> ( ( abs ` x ) = 1 \/ ( abs ` x ) = A ) ) ) |
| 120 | 93 119 | mpd | |- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( ( abs ` x ) = 1 \/ ( abs ` x ) = A ) ) |
| 121 | zringunit | |- ( x e. ( Unit ` ZZring ) <-> ( x e. ZZ /\ ( abs ` x ) = 1 ) ) |
|
| 122 | 121 | baib | |- ( x e. ZZ -> ( x e. ( Unit ` ZZring ) <-> ( abs ` x ) = 1 ) ) |
| 123 | 89 122 | syl | |- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( x e. ( Unit ` ZZring ) <-> ( abs ` x ) = 1 ) ) |
| 124 | 104 31 | syl | |- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( y e. ( Unit ` ZZring ) <-> ( abs ` y ) = 1 ) ) |
| 125 | 105 | abscld | |- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( abs ` y ) e. RR ) |
| 126 | 125 | recnd | |- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( abs ` y ) e. CC ) |
| 127 | 1cnd | |- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> 1 e. CC ) |
|
| 128 | 101 | abscld | |- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( abs ` x ) e. RR ) |
| 129 | 128 | recnd | |- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( abs ` x ) e. CC ) |
| 130 | 126 127 129 111 | mulcand | |- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( ( ( abs ` x ) x. ( abs ` y ) ) = ( ( abs ` x ) x. 1 ) <-> ( abs ` y ) = 1 ) ) |
| 131 | 87 | fveq2d | |- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( abs ` ( x x. y ) ) = ( abs ` A ) ) |
| 132 | 101 105 | absmuld | |- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( abs ` ( x x. y ) ) = ( ( abs ` x ) x. ( abs ` y ) ) ) |
| 133 | 77 | ad2antrr | |- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( abs ` A ) = A ) |
| 134 | 131 132 133 | 3eqtr3d | |- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( ( abs ` x ) x. ( abs ` y ) ) = A ) |
| 135 | 129 | mulridd | |- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( ( abs ` x ) x. 1 ) = ( abs ` x ) ) |
| 136 | 134 135 | eqeq12d | |- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( ( ( abs ` x ) x. ( abs ` y ) ) = ( ( abs ` x ) x. 1 ) <-> A = ( abs ` x ) ) ) |
| 137 | eqcom | |- ( A = ( abs ` x ) <-> ( abs ` x ) = A ) |
|
| 138 | 136 137 | bitrdi | |- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( ( ( abs ` x ) x. ( abs ` y ) ) = ( ( abs ` x ) x. 1 ) <-> ( abs ` x ) = A ) ) |
| 139 | 124 130 138 | 3bitr2d | |- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( y e. ( Unit ` ZZring ) <-> ( abs ` x ) = A ) ) |
| 140 | 123 139 | orbi12d | |- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( ( x e. ( Unit ` ZZring ) \/ y e. ( Unit ` ZZring ) ) <-> ( ( abs ` x ) = 1 \/ ( abs ` x ) = A ) ) ) |
| 141 | 120 140 | mpbird | |- ( ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( x x. y ) = A ) -> ( x e. ( Unit ` ZZring ) \/ y e. ( Unit ` ZZring ) ) ) |
| 142 | 141 | ex | |- ( ( A e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( x x. y ) = A -> ( x e. ( Unit ` ZZring ) \/ y e. ( Unit ` ZZring ) ) ) ) |
| 143 | 142 | ralrimivva | |- ( A e. Prime -> A. x e. ZZ A. y e. ZZ ( ( x x. y ) = A -> ( x e. ( Unit ` ZZring ) \/ y e. ( Unit ` ZZring ) ) ) ) |
| 144 | 25 26 1 27 | isirred2 | |- ( A e. I <-> ( A e. ZZ /\ -. A e. ( Unit ` ZZring ) /\ A. x e. ZZ A. y e. ZZ ( ( x x. y ) = A -> ( x e. ( Unit ` ZZring ) \/ y e. ( Unit ` ZZring ) ) ) ) ) |
| 145 | 71 84 143 144 | syl3anbrc | |- ( A e. Prime -> A e. I ) |
| 146 | 145 | adantl | |- ( ( A e. NN /\ A e. Prime ) -> A e. I ) |
| 147 | 70 146 | impbida | |- ( A e. NN -> ( A e. I <-> A e. Prime ) ) |