This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An interval-closed set A in a total order has the same subspace topology as the restricted order topology. (An interval-closed set is the same thing as an open or half-open or closed interval in RR , but in other sets like QQ there are interval-closed sets like ( _pi , +oo ) i^i QQ that are not intervals.) (Contributed by Mario Carneiro, 9-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ordtrest2.1 | ⊢ 𝑋 = dom 𝑅 | |
| ordtrest2.2 | ⊢ ( 𝜑 → 𝑅 ∈ TosetRel ) | ||
| ordtrest2.3 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑋 ) | ||
| ordtrest2.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → { 𝑧 ∈ 𝑋 ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑅 𝑦 ) } ⊆ 𝐴 ) | ||
| Assertion | ordtrest2 | ⊢ ( 𝜑 → ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) = ( ( ordTop ‘ 𝑅 ) ↾t 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtrest2.1 | ⊢ 𝑋 = dom 𝑅 | |
| 2 | ordtrest2.2 | ⊢ ( 𝜑 → 𝑅 ∈ TosetRel ) | |
| 3 | ordtrest2.3 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑋 ) | |
| 4 | ordtrest2.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → { 𝑧 ∈ 𝑋 ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑅 𝑦 ) } ⊆ 𝐴 ) | |
| 5 | tsrps | ⊢ ( 𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel ) | |
| 6 | 2 5 | syl | ⊢ ( 𝜑 → 𝑅 ∈ PosetRel ) |
| 7 | 2 | dmexd | ⊢ ( 𝜑 → dom 𝑅 ∈ V ) |
| 8 | 1 7 | eqeltrid | ⊢ ( 𝜑 → 𝑋 ∈ V ) |
| 9 | 8 3 | ssexd | ⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 10 | ordtrest | ⊢ ( ( 𝑅 ∈ PosetRel ∧ 𝐴 ∈ V ) → ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ ( ( ordTop ‘ 𝑅 ) ↾t 𝐴 ) ) | |
| 11 | 6 9 10 | syl2anc | ⊢ ( 𝜑 → ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ ( ( ordTop ‘ 𝑅 ) ↾t 𝐴 ) ) |
| 12 | eqid | ⊢ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) = ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) | |
| 13 | eqid | ⊢ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) = ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) | |
| 14 | 1 12 13 | ordtval | ⊢ ( 𝑅 ∈ TosetRel → ( ordTop ‘ 𝑅 ) = ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ) ) ) |
| 15 | 2 14 | syl | ⊢ ( 𝜑 → ( ordTop ‘ 𝑅 ) = ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ) ) ) |
| 16 | 15 | oveq1d | ⊢ ( 𝜑 → ( ( ordTop ‘ 𝑅 ) ↾t 𝐴 ) = ( ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ) ) ↾t 𝐴 ) ) |
| 17 | fibas | ⊢ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ) ∈ TopBases | |
| 18 | tgrest | ⊢ ( ( ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ) ∈ TopBases ∧ 𝐴 ∈ V ) → ( topGen ‘ ( ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ) ↾t 𝐴 ) ) = ( ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ) ) ↾t 𝐴 ) ) | |
| 19 | 17 9 18 | sylancr | ⊢ ( 𝜑 → ( topGen ‘ ( ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ) ↾t 𝐴 ) ) = ( ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ) ) ↾t 𝐴 ) ) |
| 20 | 16 19 | eqtr4d | ⊢ ( 𝜑 → ( ( ordTop ‘ 𝑅 ) ↾t 𝐴 ) = ( topGen ‘ ( ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ) ↾t 𝐴 ) ) ) |
| 21 | firest | ⊢ ( fi ‘ ( ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↾t 𝐴 ) ) = ( ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ) ↾t 𝐴 ) | |
| 22 | 21 | fveq2i | ⊢ ( topGen ‘ ( fi ‘ ( ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↾t 𝐴 ) ) ) = ( topGen ‘ ( ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ) ↾t 𝐴 ) ) |
| 23 | 20 22 | eqtr4di | ⊢ ( 𝜑 → ( ( ordTop ‘ 𝑅 ) ↾t 𝐴 ) = ( topGen ‘ ( fi ‘ ( ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↾t 𝐴 ) ) ) ) |
| 24 | inex1g | ⊢ ( 𝑅 ∈ TosetRel → ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∈ V ) | |
| 25 | 2 24 | syl | ⊢ ( 𝜑 → ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∈ V ) |
| 26 | ordttop | ⊢ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∈ V → ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ∈ Top ) | |
| 27 | 25 26 | syl | ⊢ ( 𝜑 → ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ∈ Top ) |
| 28 | 1 12 13 | ordtuni | ⊢ ( 𝑅 ∈ TosetRel → 𝑋 = ∪ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ) |
| 29 | 2 28 | syl | ⊢ ( 𝜑 → 𝑋 = ∪ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ) |
| 30 | 29 8 | eqeltrrd | ⊢ ( 𝜑 → ∪ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ∈ V ) |
| 31 | uniexb | ⊢ ( ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ∈ V ↔ ∪ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ∈ V ) | |
| 32 | 30 31 | sylibr | ⊢ ( 𝜑 → ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ∈ V ) |
| 33 | restval | ⊢ ( ( ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ∈ V ∧ 𝐴 ∈ V ) → ( ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↾t 𝐴 ) = ran ( 𝑣 ∈ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↦ ( 𝑣 ∩ 𝐴 ) ) ) | |
| 34 | 32 9 33 | syl2anc | ⊢ ( 𝜑 → ( ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↾t 𝐴 ) = ran ( 𝑣 ∈ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↦ ( 𝑣 ∩ 𝐴 ) ) ) |
| 35 | sseqin2 | ⊢ ( 𝐴 ⊆ 𝑋 ↔ ( 𝑋 ∩ 𝐴 ) = 𝐴 ) | |
| 36 | 3 35 | sylib | ⊢ ( 𝜑 → ( 𝑋 ∩ 𝐴 ) = 𝐴 ) |
| 37 | eqid | ⊢ dom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) = dom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) | |
| 38 | 37 | ordttopon | ⊢ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∈ V → ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ∈ ( TopOn ‘ dom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 39 | 25 38 | syl | ⊢ ( 𝜑 → ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ∈ ( TopOn ‘ dom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 40 | 1 | psssdm | ⊢ ( ( 𝑅 ∈ PosetRel ∧ 𝐴 ⊆ 𝑋 ) → dom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) = 𝐴 ) |
| 41 | 6 3 40 | syl2anc | ⊢ ( 𝜑 → dom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) = 𝐴 ) |
| 42 | 41 | fveq2d | ⊢ ( 𝜑 → ( TopOn ‘ dom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) = ( TopOn ‘ 𝐴 ) ) |
| 43 | 39 42 | eleqtrd | ⊢ ( 𝜑 → ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ∈ ( TopOn ‘ 𝐴 ) ) |
| 44 | toponmax | ⊢ ( ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ∈ ( TopOn ‘ 𝐴 ) → 𝐴 ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) | |
| 45 | 43 44 | syl | ⊢ ( 𝜑 → 𝐴 ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 46 | 36 45 | eqeltrd | ⊢ ( 𝜑 → ( 𝑋 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 47 | elsni | ⊢ ( 𝑣 ∈ { 𝑋 } → 𝑣 = 𝑋 ) | |
| 48 | 47 | ineq1d | ⊢ ( 𝑣 ∈ { 𝑋 } → ( 𝑣 ∩ 𝐴 ) = ( 𝑋 ∩ 𝐴 ) ) |
| 49 | 48 | eleq1d | ⊢ ( 𝑣 ∈ { 𝑋 } → ( ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ↔ ( 𝑋 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) ) |
| 50 | 46 49 | syl5ibrcom | ⊢ ( 𝜑 → ( 𝑣 ∈ { 𝑋 } → ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) ) |
| 51 | 50 | ralrimiv | ⊢ ( 𝜑 → ∀ 𝑣 ∈ { 𝑋 } ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 52 | 1 2 3 4 | ordtrest2lem | ⊢ ( 𝜑 → ∀ 𝑣 ∈ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 53 | df-rn | ⊢ ran 𝑅 = dom ◡ 𝑅 | |
| 54 | cnvtsr | ⊢ ( 𝑅 ∈ TosetRel → ◡ 𝑅 ∈ TosetRel ) | |
| 55 | 2 54 | syl | ⊢ ( 𝜑 → ◡ 𝑅 ∈ TosetRel ) |
| 56 | 1 | psrn | ⊢ ( 𝑅 ∈ PosetRel → 𝑋 = ran 𝑅 ) |
| 57 | 6 56 | syl | ⊢ ( 𝜑 → 𝑋 = ran 𝑅 ) |
| 58 | 3 57 | sseqtrd | ⊢ ( 𝜑 → 𝐴 ⊆ ran 𝑅 ) |
| 59 | 57 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 𝑋 = ran 𝑅 ) |
| 60 | 59 | rabeqdv | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → { 𝑧 ∈ 𝑋 ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑅 𝑦 ) } = { 𝑧 ∈ ran 𝑅 ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑅 𝑦 ) } ) |
| 61 | vex | ⊢ 𝑦 ∈ V | |
| 62 | vex | ⊢ 𝑧 ∈ V | |
| 63 | 61 62 | brcnv | ⊢ ( 𝑦 ◡ 𝑅 𝑧 ↔ 𝑧 𝑅 𝑦 ) |
| 64 | vex | ⊢ 𝑥 ∈ V | |
| 65 | 62 64 | brcnv | ⊢ ( 𝑧 ◡ 𝑅 𝑥 ↔ 𝑥 𝑅 𝑧 ) |
| 66 | 63 65 | anbi12ci | ⊢ ( ( 𝑦 ◡ 𝑅 𝑧 ∧ 𝑧 ◡ 𝑅 𝑥 ) ↔ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑅 𝑦 ) ) |
| 67 | 66 | rabbii | ⊢ { 𝑧 ∈ ran 𝑅 ∣ ( 𝑦 ◡ 𝑅 𝑧 ∧ 𝑧 ◡ 𝑅 𝑥 ) } = { 𝑧 ∈ ran 𝑅 ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑅 𝑦 ) } |
| 68 | 60 67 | eqtr4di | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → { 𝑧 ∈ 𝑋 ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑅 𝑦 ) } = { 𝑧 ∈ ran 𝑅 ∣ ( 𝑦 ◡ 𝑅 𝑧 ∧ 𝑧 ◡ 𝑅 𝑥 ) } ) |
| 69 | 68 4 | eqsstrrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → { 𝑧 ∈ ran 𝑅 ∣ ( 𝑦 ◡ 𝑅 𝑧 ∧ 𝑧 ◡ 𝑅 𝑥 ) } ⊆ 𝐴 ) |
| 70 | 69 | ancom2s | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) → { 𝑧 ∈ ran 𝑅 ∣ ( 𝑦 ◡ 𝑅 𝑧 ∧ 𝑧 ◡ 𝑅 𝑥 ) } ⊆ 𝐴 ) |
| 71 | 53 55 58 70 | ordtrest2lem | ⊢ ( 𝜑 → ∀ 𝑣 ∈ ran ( 𝑧 ∈ ran 𝑅 ↦ { 𝑤 ∈ ran 𝑅 ∣ ¬ 𝑤 ◡ 𝑅 𝑧 } ) ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( ◡ 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 72 | vex | ⊢ 𝑤 ∈ V | |
| 73 | 72 62 | brcnv | ⊢ ( 𝑤 ◡ 𝑅 𝑧 ↔ 𝑧 𝑅 𝑤 ) |
| 74 | 73 | bicomi | ⊢ ( 𝑧 𝑅 𝑤 ↔ 𝑤 ◡ 𝑅 𝑧 ) |
| 75 | 74 | a1i | ⊢ ( 𝜑 → ( 𝑧 𝑅 𝑤 ↔ 𝑤 ◡ 𝑅 𝑧 ) ) |
| 76 | 75 | notbid | ⊢ ( 𝜑 → ( ¬ 𝑧 𝑅 𝑤 ↔ ¬ 𝑤 ◡ 𝑅 𝑧 ) ) |
| 77 | 57 76 | rabeqbidv | ⊢ ( 𝜑 → { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } = { 𝑤 ∈ ran 𝑅 ∣ ¬ 𝑤 ◡ 𝑅 𝑧 } ) |
| 78 | 57 77 | mpteq12dv | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) = ( 𝑧 ∈ ran 𝑅 ↦ { 𝑤 ∈ ran 𝑅 ∣ ¬ 𝑤 ◡ 𝑅 𝑧 } ) ) |
| 79 | 78 | rneqd | ⊢ ( 𝜑 → ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) = ran ( 𝑧 ∈ ran 𝑅 ↦ { 𝑤 ∈ ran 𝑅 ∣ ¬ 𝑤 ◡ 𝑅 𝑧 } ) ) |
| 80 | psss | ⊢ ( 𝑅 ∈ PosetRel → ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∈ PosetRel ) | |
| 81 | 6 80 | syl | ⊢ ( 𝜑 → ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∈ PosetRel ) |
| 82 | ordtcnv | ⊢ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∈ PosetRel → ( ordTop ‘ ◡ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) = ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) | |
| 83 | 81 82 | syl | ⊢ ( 𝜑 → ( ordTop ‘ ◡ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) = ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 84 | cnvin | ⊢ ◡ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) = ( ◡ 𝑅 ∩ ◡ ( 𝐴 × 𝐴 ) ) | |
| 85 | cnvxp | ⊢ ◡ ( 𝐴 × 𝐴 ) = ( 𝐴 × 𝐴 ) | |
| 86 | 85 | ineq2i | ⊢ ( ◡ 𝑅 ∩ ◡ ( 𝐴 × 𝐴 ) ) = ( ◡ 𝑅 ∩ ( 𝐴 × 𝐴 ) ) |
| 87 | 84 86 | eqtri | ⊢ ◡ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) = ( ◡ 𝑅 ∩ ( 𝐴 × 𝐴 ) ) |
| 88 | 87 | fveq2i | ⊢ ( ordTop ‘ ◡ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) = ( ordTop ‘ ( ◡ 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) |
| 89 | 83 88 | eqtr3di | ⊢ ( 𝜑 → ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) = ( ordTop ‘ ( ◡ 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 90 | 89 | eleq2d | ⊢ ( 𝜑 → ( ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ↔ ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( ◡ 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) ) |
| 91 | 79 90 | raleqbidv | ⊢ ( 𝜑 → ( ∀ 𝑣 ∈ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ↔ ∀ 𝑣 ∈ ran ( 𝑧 ∈ ran 𝑅 ↦ { 𝑤 ∈ ran 𝑅 ∣ ¬ 𝑤 ◡ 𝑅 𝑧 } ) ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( ◡ 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) ) |
| 92 | 71 91 | mpbird | ⊢ ( 𝜑 → ∀ 𝑣 ∈ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 93 | ralunb | ⊢ ( ∀ 𝑣 ∈ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ↔ ( ∀ 𝑣 ∈ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ ∀ 𝑣 ∈ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) ) | |
| 94 | 52 92 93 | sylanbrc | ⊢ ( 𝜑 → ∀ 𝑣 ∈ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 95 | ralunb | ⊢ ( ∀ 𝑣 ∈ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ↔ ( ∀ 𝑣 ∈ { 𝑋 } ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ ∀ 𝑣 ∈ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) ) | |
| 96 | 51 94 95 | sylanbrc | ⊢ ( 𝜑 → ∀ 𝑣 ∈ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 97 | eqid | ⊢ ( 𝑣 ∈ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↦ ( 𝑣 ∩ 𝐴 ) ) = ( 𝑣 ∈ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↦ ( 𝑣 ∩ 𝐴 ) ) | |
| 98 | 97 | fmpt | ⊢ ( ∀ 𝑣 ∈ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ↔ ( 𝑣 ∈ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↦ ( 𝑣 ∩ 𝐴 ) ) : ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ⟶ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 99 | 96 98 | sylib | ⊢ ( 𝜑 → ( 𝑣 ∈ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↦ ( 𝑣 ∩ 𝐴 ) ) : ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ⟶ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 100 | 99 | frnd | ⊢ ( 𝜑 → ran ( 𝑣 ∈ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↦ ( 𝑣 ∩ 𝐴 ) ) ⊆ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 101 | 34 100 | eqsstrd | ⊢ ( 𝜑 → ( ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↾t 𝐴 ) ⊆ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 102 | tgfiss | ⊢ ( ( ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ∈ Top ∧ ( ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↾t 𝐴 ) ⊆ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) → ( topGen ‘ ( fi ‘ ( ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↾t 𝐴 ) ) ) ⊆ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) | |
| 103 | 27 101 102 | syl2anc | ⊢ ( 𝜑 → ( topGen ‘ ( fi ‘ ( ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↾t 𝐴 ) ) ) ⊆ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 104 | 23 103 | eqsstrd | ⊢ ( 𝜑 → ( ( ordTop ‘ 𝑅 ) ↾t 𝐴 ) ⊆ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 105 | 11 104 | eqssd | ⊢ ( 𝜑 → ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) = ( ( ordTop ‘ 𝑅 ) ↾t 𝐴 ) ) |